StackTIS: A stacked generalization approach for effective prediction of translation initiation sites
نویسندگان
چکیده
The prediction of the translation initiation site in an mRNA or cDNA sequence is an essential step in gene prediction and an open research problem in bioinformatics. Although recent approaches perform well, more effective and reliable methodologies are solicited. We developed an adaptable data mining method, called StackTIS, which is modular and consists of three prediction components that are combined into a meta-classification system, using stacked generalization, in a highly effective framework. We performed extensive experiments on sequences of two diverse eukaryotic organisms (Homo sapiens and Oryza sativa), indicating that StackTIS achieves statistically significant improvement in performance.
منابع مشابه
An Ensemble Classification Model for the Diagnosis of Breast Cancer Using Stacked Generalization
Introduction: Breast cancer is one of the most common types of cancer whose incidence has increased dramatically in recent years. In order to diagnose this disease, many parameters must be taken into consideration and mistakes are possible due to human errors or environmental factors. For this reason, in recent decades, Artificial Intelligence has been used by medical practitioners to diagnose ...
متن کاملAn Ensemble Classification Model for the Diagnosis of Breast Cancer Using Stacked Generalization
Introduction: Breast cancer is one of the most common types of cancer whose incidence has increased dramatically in recent years. In order to diagnose this disease, many parameters must be taken into consideration and mistakes are possible due to human errors or environmental factors. For this reason, in recent decades, Artificial Intelligence has been used by medical practitioners to diagnose ...
متن کاملMeta-level Statistical Machine Translation
We propose a simple and effective method to build a meta-level Statistical Machine Translation (SMT), called meta-SMT, for system combination. Our approach is based on the framework of Stacked Generalization, also known as Stacking, which is an ensemble learning algorithm, widely used in machine learning tasks. First, a collection of base-level SMTs is generated for obtaining a meta-level corpu...
متن کاملPrediction of translation initiation sites on the genome of Synechocystis sp. strain PCC6803 by Hidden Markov model.
We developed a computer program, GeneHackerTL, which predicts the most probable translation initiation site for a given nucleotide sequence. The program requires that information be extracted from the nucleotide sequence data surrounding the translation initiation sites according to the framework of the Hidden Markov Model. Since the translation initiation sites of 72 highly abundant proteins h...
متن کاملThe Ribosome Scanning Model for Translation Initiation: Implications for Gene Prediction and Full-Length cDNA Detection
Biological signals, such as the start of protein translation in eukaryotic mRNA, are stretches of nucleotides recognized by cellular machinery. There are a variety of techniques for modeling and identifying them. Most of these techniques either assume that the base pairs at each position of the signal are independently distributed, or they allow for limited dependencies among different position...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers in biology and medicine
دوره 42 1 شماره
صفحات -
تاریخ انتشار 2012