Prediction based - High Frequency Trading on Financial Time Series

نویسندگان

  • Farhad Kia
  • János Levendovszky
چکیده

In this paper we investigate prediction based trading on financial time series assuming general AR(J) models. A suitable nonlinear estimator for predicting the future values will be provided by a properly trained FeedForward Neural Network (FFNN) which can capture the characteristics of the conditional expected value. In this way, one can implement a simple trading strategy based on the predicted future value of the asset price and comparing it to the current value. The method is tested on FOREX data series and achieved a considerable profit on the mid price. In the presence of the bid-ask spread, the gain is smaller but it still ranges in the interval 2-6 percent in 6 months without using any leverage. FFNNs can provide fast prediction which can give rise to high frequency trading on intraday data series.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Profitability of Momentum and Contrarian Strategies Based on Trading Volume in Tehran Stock Exchange: A Comparison of Emerging Market

In this study, the profitability of contrarian and momentum strategies were traded in mid- term based on trading volume. The stocks were categorized into three parts (high, middle and low) at the outset. Then, the relationship between excess return with three components such as cross-sectional risk, lead-lag effect and time-series pattern were examined based on Jegadeesh and Titman approach.The...

متن کامل

Adaptive Neuro-Fuzzy Inference System for Financial Trading using Intraday Seasonality Observation Model

The prediction of financial time series is a very complicated process. If the efficient market hypothesis holds, then the predictability of most financial time series would be a rather controversial issue, due to the fact that the current price contains already all available information in the market. This paper extends the Adaptive Neuro Fuzzy Inference System for High Frequency Trading which ...

متن کامل

Risk prediction based on a time series case study: Tazareh coal mine

In this work, the time series modeling was used to predict the Tazareh coal mine risks. For this purpose, initially, a monthly analysis of the risk constituents including frequency index and incidence severity index was performed. Next, a monthly time series diagram related to each one of these indices was for a nine year period of time from 2005 to 2013. After extrusion of the trend, seasonali...

متن کامل

Supervised classification-based stock prediction and portfolio optimization

As the number of publicly traded companies as well as the amount of their financial data grows rapidly and improvements in hardware infrastructure and information processing technologies enable high-speed processing of large amounts of data, it is highly desired to have tracking, analysis, and eventually stock selections automated. Machine learning has already attained an important place in tra...

متن کامل

Natural time analysis in financial markets

In this paper we introduce natural time analysis in financial markets. Due to the remarkable results of this analysis on earthquake prediction and the similarities of earthquake data to financial time series, its application in price prediction and algorithmic trading seems to be a natural choice. This is tested through a trading strategy with very encouraging results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013