Face Alignment Assisted by Head Pose Estimation
نویسندگان
چکیده
In this paper we propose supervised initialisation scheme for cascaded face alignment based on explicit head pose estimation. We first investigate the failure cases of most state of the art face alignment approaches and observe that these failures often share one common global property, i.e. the head pose variation is usually large. Inspired by this, we propose a deep convolutional network model for reliable and accurate head pose estimation. Instead of using a mean face shape, or randomly selected shapes for cascaded face alignment initialisation, we propose two schemes for generating initialisation: the first one relies on projecting a mean 3D face shape (represented by 3D facial landmarks) onto 2D image under the estimated head pose; the second one searches nearest neighbour shapes from a training set according to head pose distance. By doing so, the initialisation gets closer to the actual shape, which enhances the possibility of convergence and in turn improves the face alignment performance. We demonstrate the proposed method on the benchmark 300W dataset and show very competitive performance in both head pose estimation and face alignment.
منابع مشابه
Head Pose Estimation in Seminar Room Using Multi View Face Detectors
Head pose estimation in low resolution is a challenge problem. Traditional pose estimation algorithms, which assume faces have been well aligned before pose estimation, would face much difficulty in this situation, since face alignment itself does not work well in this low resolution scenario. In this paper, we propose to estimate head pose using viewbased multi-view face detectors directly. Na...
متن کاملTowards Arbitrary-View Face Alignment by Recommendation Trees
Learning to simultaneously handle face alignment of arbitrary views, e.g. frontal and profile views, appears to be more challenging than we thought. The difficulties lay in i) accommodating the complex appearance-shape relations exhibited in different views, and ii) encompassing the varying landmark point sets due to self-occlusion and different landmark protocols. Most existing studies approac...
متن کاملNosePose: a competitive, landmark-free methodology for head pose estimation in the wild
We perform head pose estimation solely based on the nose region as input, extracted from 2D images in unconstrained environments. Such information is useful for many face analysis applications, such as recognition, reconstruction, alignment, tracking and expression recognition. Using the nose region has advantages over using the whole face; not only it is less likely to be occluded by acesssori...
متن کاملHoloFace: Augmenting Human-to-Human Interactions on HoloLens
We present HoloFace, an open-source framework for face alignment, head pose estimation and facial attribute retrieval for Microsoft HoloLens. HoloFace implements two state-of-the-art face alignment methods which can be used interchangeably: one running locally and one running on a remote backend. Head pose estimation is accomplished by fitting a deformable 3D model to the landmarks localized us...
متن کاملA two-stage head pose estimation framework and evaluation
Head pose is an important indicator of a person’s focus of attention. Also, head pose estimation can be used as the front-end analysis for multi-view face analysis. For example, face recognition and identification algorithms are usually view dependent. Pose classification can help such face recognition systems to select the best view model. Subspace analysis has been widely used for head pose e...
متن کامل