Nuclear magnetic resonance restricted diffusion between parallel planes in a cosine magnetic field: an exactly solvable model.

نویسنده

  • Denis S Grebenkov
چکیده

We propose a theoretical and numerical analysis of restricted diffusion between parallel planes in a cosine magnetic field. The specific choice of this spatial profile as proportional to an eigenfunction of the Laplace operator in this confining geometry considerably simplifies the underlying mathematics. In particular, exact and explicit relations for several moments of the total phase accumulated by diffusing spins are derived. These relations are shown to provide good approximations for the typical case of a linear magnetic field gradient, for which the theoretical analysis was in general limited to the second moment. We study the structure and the properties of the higher order moments which are responsible for the breakdown of the "Gaussian phase approximation" (GPA) at intense magnetic fields. The limits of applicability of the GPA for nonlinear magnetic fields and the transition to the localization regime are discussed. In particular, a diagram of different restricted diffusion regimes is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computer simulation of the spin-echo spatial distribution in the case of restricted self-diffusion.

This article concerns the question of a proper stochastic treatment of the spin-echo self-diffusion attenuation of confined particles that arises when short gradient pulse approximation fails. Diffusion is numerically simulated as a succession of random steps when motion is restricted between two perfectly reflecting parallel planes. With the magnetic field gradient perpendicular to the plane b...

متن کامل

Quantitative characterization of tissue microstructure with temporal diffusion spectroscopy.

The signals recorded by diffusion-weighted magnetic resonance imaging (DWI) are dependent on the micro-structural properties of biological tissues, so it is possible to obtain quantitative structural information non-invasively from such measurements. Oscillating gradient spin echo (OGSE) methods have the ability to probe the behavior of water diffusion over different time scales and the potenti...

متن کامل

Computational study of energetic, stability, and nuclear magnetic resonance of BN nanotube as a nanosensor

Now a day study on boron nitrid nanotubes are in considerable attetion due to their unique properties in different field of science. In this letter, after final optimization, thermodynamic properties analysis, stabilities, electronic structure and nuclear magnetic resonance parameters including σ isotropic and σ anisotropic tensors and asymmetric parameters of 15N and 11B nuclei are calculated....

متن کامل

Self-diffusion of water and oil in peanuts investigated by PFG NMR.

Pulsed field gradient (PFG) nuclear magnetic resonance (NMR) has been used to study self-diffusion characteristics of water and oil in natural peanuts and in peanuts saturated with water. From the dependence on diffusion time of the echo decay due to diffusion, regions of completely restricted diffusion for the oil molecules were identified. The mean size and size distribution function of these...

متن کامل

Designing and Fabrication of a New Radiofrequency Planar microcoil for mini-Nuclear Magnetic Resonance

Introduction Radiofrequency planar microcoils are used to increase the resolution of magnetic resonance images of small samples. In this study, we aimed to design and fabricate a spiral planar microcoil constructed on a double-sided printed circuit board (PCB). It has four rings with an internal diameter of 241 microns tuned and matched at 63.8 MHz. Materials and Methods To achieve the maximum ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 126 10  شماره 

صفحات  -

تاریخ انتشار 2007