On-line, real-time measurements of cellular biomass using dielectric spectroscopy.

نویسندگان

  • J E Yardley
  • D B Kell
  • J Barrett
  • C L Davey
چکیده

Introduction All else being equal, the productivity of a biological process is determined by the quantity of biomass present. There is therefore a major requirement for the accurate measurement and control of the biomass within fermentors, at both laboratory and industrial scales. Presently the range of sensors available that can be used in situ and reliably for the monitoring and regulation of biotechnological processes in general is rather limited. These sensors normally rely upon physical (e.g. optical, mechanical and electrical) or chemical variables (e.g. pH and concentration) rather than biological ones per se (Sarra et al., 1996; Pons, 1991). However only physical methods allow the on-line, real-time estimation of biomass (Harris and Kell, 1985). As well as physical methods, any easily determinable chemical that is produced or consumed by cells at an essentially constant rate during cell growth may also be used to assess biomass, e.g. carbon dioxide evolution and oxygen consumption. In these indirect methods biomass is then calculated based upon mass balances, stoichiometric relationships or empirical constants. However, this type of approach has the great disadvantage that it does not generally discriminate between biomass and necromass (Kell et al., 1990). Even if biomass was easily measurable there is still the question of what is biologically relevant information for fermentation control and how can one define and quantify it (e.g. metabolism, viability, vitality, morphology) (Kell et al., 1987; Kell, 1987a;

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impedance Spectroscopy for in Situ Biomass Measurements in Microbioreactors

Mammalian cells dominate the biopharmaceutical industry and maintaining cell viability is a limiting factor in most mammalian cell cultures. This project is focused on developing an online (in-situ) dielectric spectroscopy sensor that is capable of measuring cell viability in real-time to enable optimization of culture conditions for Chinese Hamster Ovary (CHO) cell lines in micro-bioreactors.

متن کامل

Correction of the influence of baseline artefacts and electrode polarisation on dielectric spectra.

The deconvolution of biological dielectric spectra can be difficult enough with artefact-free spectra but is more problematic when machine baseline artefacts and electrode polarisation are present as well. In addition, these two sources of anomalies can be responsible for significant interference with dielectric biomass measurements made using one- or two-spot frequencies. The aim of this paper...

متن کامل

Towards better understanding of an industrial cell factory: investigating the feasibility of real-time metabolic flux analysis in Pichia pastoris

BACKGROUND Novel analytical tools, which shorten the long and costly development cycles of biopharmaceuticals are essential. Metabolic flux analysis (MFA) shows great promise in improving our understanding of the metabolism of cell factories in bioreactors, but currently only provides information post-process using conventional off-line methods. MFA combined with real time multianalyte process ...

متن کامل

Structural, Electrical, and impedance spectroscopy studies of Barium substituted nano calcium ferrites synthesized by solution combustion method.

Barium substituted nanocrystalline ferrites with chemical composition BaxCa1-xFe2O4 (x =0.0 to 0.25) BCAF were prepared by solution combustion method. The phase formation of mixed spinal structured ferrites was confirmed by PXRD analysis. The average crystallite size was calculated using Debye-Scherrer formula and it was found to be in the range of 27-44 nm. Surface morphology was analyzed by S...

متن کامل

An Improved Modeling of TDR Signal Propagation for Measuring Complex Dielectric Permittivity

Time domain reflectometry (TDR) is a measurement technique based upon transmission line theory. The solutions of transmission line equations are reformulated in terms of independent physical properties, instead of coupled per-unit-length circuit parameters. The complete TDR response is effectively modeled by a non-uniform transmission line using the non-recursive ABCD matrix approach. Approache...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology & genetic engineering reviews

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2000