Optimizing Seed Selection for Fuzzing

نویسندگان

  • Alexandre Rebert
  • Sang Kil Cha
  • Thanassis Avgerinos
  • Jonathan Foote
  • David Warren
  • Gustavo Grieco
  • David Brumley
چکیده

Randomly mutating well-formed program inputs or simply fuzzing, is a highly effective and widely used strategy to find bugs in software. Other than showing fuzzers find bugs, there has been little systematic effort in understanding the science of how to fuzz properly. In this paper, we focus on how to mathematically formulate and reason about one critical aspect in fuzzing: how best to pick seed files to maximize the total number of bugs found during a fuzz campaign. We design and evaluate six different algorithms using over 650 CPU days on Amazon Elastic Compute Cloud (EC2) to provide ground truth data. Overall, we find 240 bugs in 8 applications and show that the choice of algorithm can greatly increase the number of bugs found. We also show that current seed selection strategies as found in Peach may fare no better than picking seeds at random. We make our data set and code publicly available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Exploratory Survey of Hybrid Testing Techniques Involving Symbolic Execution and Fuzzing

Recent efforts in practical symbolic execution have successfully mitigated the path-explosion problem to some extent with search-based heuristics and compositional approaches. Similarly, due to an increase in the performance of cheap multi-core commodity computers, fuzzing as a viable method of random mutation-based testing has also seen promise. However, the possibility of combining symbolic e...

متن کامل

Improving Function Coverage with Munch: A Hybrid Fuzzing and Directed Symbolic Execution Approach

Fuzzing and symbolic execution are popular techniques for finding vulnerabilities and generating test-cases for programs. Fuzzing, a blackbox method that mutates seed input values, is generally incapable of generating diverse inputs that exercise all paths in the program. Due to the path-explosion problem and dependence on SMT solvers, symbolic execution may also not achieve high path coverage....

متن کامل

Not all bytes are equal: Neural byte sieve for fuzzing

Fuzzing is a popular dynamic program analysis technique used to find vulnerabilities in complex software. Fuzzing involves presenting a target program with crafted malicious input designed to cause crashes, buffer overflows, memory errors, and exceptions. Crafting malicious inputs in an efficient manner is a difficult open problem and often the best approach to generating such inputs is through...

متن کامل

INSTRIM: Lightweight Instrumentation for Coverage-guided Fuzzing

Empowered by instrumentation, coverage-guided fuzzing monitors the program execution path taken by an input, and prioritizes inputs based on their contribution to code coverage. Although instrumenting every basic block ensures full visibility, it slows down the fuzzer and thus the speed of vulnerability discovery. This paper shows that thanks to common program structures (e.g., directed acyclic...

متن کامل

Sequence analysis Optimal seed solver: optimizing seed selection in read mapping

Motivation: Optimizing seed selection is an important problem in read mapping. The number of non-overlapping seeds a mapper selects determines the sensitivity of the mapper while the total frequency of all selected seeds determines the speed of the mapper. Modern seed-and-extend mappers usually select seeds with either an equal and fixed-length scheme or with an inflexible placement scheme, bot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014