Morphological transformation of hematite nanostructures during oxidation of iron.
نویسندگان
چکیده
Oxidation of metals usually results in the formation of an oxide nanostructure with poorly controlled growth morphologies. By employing a simple mechanical approach that uses sandblasting to modify the surface roughness of iron substrates, we demonstrate that the morphologies of hematite (α-Fe2O3) nanostructures varying from the growth of one-dimensional nanowires to two-dimensional nanoblades can be achieved during the thermal oxidation of iron. Electron microscopy studies show that the effect of surface sandblasting is to effectively modify the oxide nucleation locations that define the growth shapes. The optical properties of hematite nanowires and nanoblades are examined for the demonstration of the morphology-property correlations.
منابع مشابه
مطالعۀ گذار فاز هماتیت-آهن در فرآیند تولید نانوذرات هسته-پوستۀ آهن-کربن و بررسی خواص مغناطیسی و الکترومغناطیسی آنها
The structural properties and microwave absorption capability of the iron nanoparticles and iron-carbon core-shell nanoparticles have been studied, in the present paper. The investigated nanoparticles were synthesized by hydrothermal route and by reduction of hematite nanoparticles during annealing in argon-hydrogen atmosphere. Hematite-iron phase transformation during the reduction process has...
متن کاملThe growth of hematite nanobelts and nanowires—tune the shape via oxygen gas pressure
Using the thermal oxidation of iron, we show that the growth morphologies of one-dimensional nanostructures of hematite (a-Fe2O3) can be tuned by varying the oxygen gas pressure. It is found that the oxidation at the oxygen gas pressures of ;0.1 Torr is dominated by the growth of hematite nanobelts, whereas oxidation at pressure near 200 Torr is dominated by the growth of hematite nanowires. De...
متن کاملHematite Thin Films with Various Nanoscopic Morphologies Through Control of Self-Assembly Structures
Hematite (α-Fe2O3) thin films with various nanostructures were synthesized through self-assembly between iron oxide hydroxide particles, generated by hydrolysis and condensation of Fe(NO3)3 · 6H2O, and a Pluronic triblock copolymer (F127, (EO)106(PO)70(EO)106, EO = ethylene oxide, PO = propylene oxide), followed by calcination. The self-assembly structure can be tuned by introducing water in a ...
متن کاملInterconversion of α‐Fe2O3 and Fe3O4 Thin Films: Mechanisms, Morphology, and Evidence for Unexpected Substrate Participation
The reversible transformations of thin magnetite (Fe3O4) and hematite (αFe2O3) films grown on Pt(111) and Ag(111) single crystals as support have been investigated by a combined low energy electron microscopy (LEEM) and low-energy electron diffraction (LEED) study. The conversions were driven by oxidation, annealing in ultrahigh vacuum (UHV), or Fe deposition with subsequent annealing. As expec...
متن کاملSynthesis of Iron Oxide Nanoparticles using Borohydride Reduction
Iron oxide (Fe2O3) nanoparticles were synthesized by a simple approach using sodium borohydride (NaBH4) and Iron chloride hexahydrate (FeCl3.6H2O). Their physicochemical properties were characterized by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron dispersive spectroscopy (EDS). XRD pattern showed that the iron...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 5 16 شماره
صفحات -
تاریخ انتشار 2013