A Unique Pool of Compatible Solutes on Rhodopirellula baltica, Member of the Deep-Branching Phylum Planctomycetes
نویسندگان
چکیده
The intracellular accumulation of small organic solutes was described in the marine bacterium Rhodopirellula baltica, which belongs to the globally distributed phylum Planctomycetes whose members exhibit an intriguing lifestyle and cell morphology. Sucrose, α-glutamate, trehalose and mannosylglucosylglycerate (MGG) are the main solutes involved in the osmoadaptation of R. baltica. The ratio and total intracellular organic solutes varied significantly in response to an increase in salinity, temperature and nitrogen content. R. baltica displayed an initial response to both osmotic and thermal stresses that includes α-glutamate accumulation. This trend was followed by a rather unique and complex osmoadaptation mechanism characterized by a dual response to sub-optimal and supra-optimal salinities. A reduction in the salinity to sub-optimal conditions led primarily to the accumulation of trehalose. In contrast, R. baltica responded to salt stress mostly by increasing the intracellular levels of sucrose. The switch between the accumulation of trehalose and sucrose was by far the most significant effect caused by increasing the salt levels of the medium. Additionally, MGG accumulation was found to be salt- as well as nitrogen-dependent. MGG accumulation was regulated by nitrogen levels replacing α-glutamate as a K(+) counterion in nitrogen-poor environments. This is the first report of the accumulation of compatible solutes in the phylum Planctomycetes and of the MGG accumulation in a mesophilic organism.
منابع مشابه
Mannosylglucosylglycerate biosynthesis in the deep-branching phylum Planctomycetes: characterization of the uncommon enzymes from Rhodopirellula baltica
The biosynthetic pathway for the rare compatible solute mannosylglucosylglycerate (MGG) accumulated by Rhodopirellula baltica, a marine member of the phylum Planctomycetes, has been elucidated. Like one of the pathways used in the thermophilic bacterium Petrotoga mobilis, it has genes coding for glucosyl-3-phosphoglycerate synthase (GpgS) and mannosylglucosyl-3-phosphoglycerate (MGPG) synthase ...
متن کاملEvaluation of the phylogenetic position of the planctomycete 'Rhodopirellula baltica' SH 1 by means of concatenated ribosomal protein sequences, DNA-directed RNA polymerase subunit sequences and whole genome trees.
In recent years, the planctomycetes have been recognized as a phylum of environmentally important bacteria with habitats ranging from soil and freshwater to marine ecosystems. The planctomycetes form an independent phylum within the bacterial domain, whose exact phylogenetic position remains controversial. With the completion of sequencing of the genome of 'Rhodopirellula baltica' SH 1, it is n...
متن کاملLife cycle analysis of the model organism Rhodopirellula baltica SH 1T by transcriptome studies
The marine organism Rhodopirellula baltica is a representative of the globally distributed phylum Planctomycetes whose members exhibit an intriguing lifestyle and cell morphology. The analysis of R. baltica's genome has revealed many biotechnologically promising features including a set of unique sulfatases and C1-metabolism genes. Salt resistance and the potential for adhesion in the adult pha...
متن کاملDetermining the bacterial cell biology of Planctomycetes
Bacteria of the phylum Planctomycetes have been previously reported to possess several features that are typical of eukaryotes, such as cytosolic compartmentalization and endocytosis-like macromolecule uptake. However, recent evidence points towards a Gram-negative cell plan for Planctomycetes, although in-depth experimental analysis has been hampered by insufficient genetic tools. Here we deve...
متن کاملTitle : Diversity of Rhodopirellula and related planctomycetes in a North Sea 1 coastal sediment employing carB as molecular marker
21 Rhodopirellula is an abundant marine member of the bacterial phylum 22 Planctomycetes. Cultivation studies revealed the presence of several closely related 23 Rhodopirellula species in European coastal sediments. Because the 16S rRNA gene 24 does not provide the desired taxonomic resolution to differentiate Rhodopirellula 25 species, we performed a comparison of the genomes of nine Rhodopire...
متن کامل