An Adaptive Finite Element Heterogeneous Multiscale Method for Stokes Flow in Porous Media

نویسندگان

  • Assyr Abdulle
  • Ondrej Budác
چکیده

A finite element heterogeneous multiscale method is proposed for solving the Stokes problem in porous media. The method is based on the coupling of an effective Darcy equation on a macroscopic mesh, with unknown permeabilities recovered from micro finite element calculations for Stokes problems on sampling domains centered at quadrature points in each macro element. The numerical method accounts for non-periodic microscopic geometry that can be obtained from a smooth deformation of a reference pore sampling domain. The computational work is nevertheless independent of the smallness of the pore structure. A priori error estimates reveal that the overall accuracy of the numerical scheme is limited by the regularity of the solutions of the Stokes micro problems. This regularity is low for a typical situation of non-convex microscopic pore geometries. We therefore propose an adaptive scheme with micro-macro mesh refinement driven by residual-based indicators that quantify both the macro and micro errors. A posteriori error analysis is derived for the new method. Two and three dimensional numerical experiments confirm the robustness and the accuracy of the adaptive method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A reduced basis finite element heterogeneous multiscale method for Stokes flow in porous media

A reduced basis Darcy-Stokes finite element heterogeneous multiscale method (RBDS-FE-HMM) is proposed for the Stokes problem in porous media. The multiscale method is based on the Darcy-Stokes finite element heterogeneous multiscale method (DS-FE-HMM) introduced in [A. Abdulle, O. Budáč, Multiscale Model. Simul. 13 (2015)] that couples a Darcy equation solved on a macroscopic mesh, with missing...

متن کامل

A Discontinuous Galerkin Reduced Basis Numerical Homogenization Method for Fluid Flow in Porous Media

We present a new conservative multiscale method for Stokes flow in heterogeneous porous media. The method couples a discontinuous Galerkin finite element method (DG-FEM) at the macroscopic scale for the solution of an effective Darcy equation with a Stokes solver at the pore scale to recover effective permeabilities at macroscopic quadrature points. To avoid costly computation of numerous Stoke...

متن کامل

Multiscale finite element methods for porous media flows and their applications

In this paper, we discuss some applications of multiscale finite element methods to two-phase immiscible flow simulations in heterogeneous porous media. We discuss some extensions of multiscale finite element methods which take into account some limited global information. These methods are well suited for channelized porous media, where the long-range effects are important. This is typical for...

متن کامل

Contents 1 Schedule 4 2

In this talk we will present recent developments in the design and analysis of numerical homogenization methods. Numerical methods for linear and nonlinear partial differential equations that combine multiscale methods with reduced order modeling techniques such as the reduced basis method will be discussed. The talk is based upon a series of joint works with various collaborators[1,2,3,4,5]. [...

متن کامل

Variational Multiscale Finite Element Method for Flows in Highly Porous Media

We present a two-scale finite element method for solving Brinkman’s and Darcy’s equations. These systems of equations model fluid flows in highly porous and porous media, respectively. The method uses a recently proposed discontinuous Galerkin FEM for Stokes’ equations by Wang and Ye and the concept of subgrid approximation developed by Arbogast for Darcy’s equations. In order to reduce the “re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Multiscale Modeling & Simulation

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2015