Quasi-periodic Solutions of 1d Nonlinear Schrödinger Equation with a Multiplicative Potential

نویسنده

  • Xiufang Ren
چکیده

This paper deals with one-dimensional (1D) nonlinear Schrödinger equation with a multiplicative potential, subject to Dirichlet boundary conditions. It is proved that for each prescribed integer b > 1, the equation admits smallamplitude quasi-periodic solutions, whose b-dimensional frequencies are small dilation of a given Diophantine vector. The proof is based on a modified infinitedimensional KAM theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-periodic solutions in a nonlinear Schrödinger equation

In this paper, one-dimensional (1D) nonlinear Schrödinger equation iut − uxx +mu+ |u|4u= 0 with the periodic boundary condition is considered. It is proved that for each given constant potential m and each prescribed integer N > 1, the equation admits a Whitney smooth family of small amplitude, time quasi-periodic solutions with N Diophantine frequencies. The proof is based on a partial Birkhof...

متن کامل

Quasi-Periodic Solutions for 1D Schrödinger Equation with the Nonlinearity |u|2pu∗

In this paper, one-dimensional (1D) nonlinear Schrödinger equation iut − uxx + |u|2pu= 0, p ∈N, with periodic boundary conditions is considered. It is proved that the above equation admits small-amplitude quasi-periodic solutions corresponding to 2-dimensional invariant tori of an associated infinite-dimensional dynamical system. The proof is based on infinite-dimensional KAM theory, partial no...

متن کامل

Quasi-periodic Solutions of the Schrödinger Equation with Arbitrary Algebraic Nonlinearities

We present a geometric formulation of existence of time quasi-periodic solutions. As an application, we prove the existence of quasi-periodic solutions of b frequencies, b ≤ d + 2, in arbitrary dimension d and for arbitrary non integrable algebraic nonlinearity p. This reflects the conservation of d momenta, energy and L norm. In 1d, we prove the existence of quasi-periodic solutions with arbit...

متن کامل

A KAM theorem for one dimensional Schrödinger equation with periodic boundary conditions

In this paper, one-dimensional (1D) nonlinear Schrödinger equation iut − uxx +mu+ g(u, ū) ū = 0, with Periodic Boundary Conditions is considered; m / ∈ 1 12Z is a real parameter and the nonlinearity g(u, ū)= ∑ j,l,j+l 4 ajlu j ū , aj l = alj ∈ R, a22 = 0 is a real analytic function in a neighborhood of the origin. The KAM machinery is adapted to fit the above equation so as to construct small-a...

متن کامل

Quasi-linear Dynamics in Nonlinear Schrödinger Equation with Periodic Boundary Conditions

It is shown that a large subset of initial data with finite energy (L norm) evolves nearly linearly in nonlinear Schrödinger equation with periodic boundary conditions. These new solutions are not perturbations of the known ones such as solitons, semiclassical or weakly linear solutions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013