Lower and Upper Power Domain Constructions Commute on all Cpos
نویسنده
چکیده
The initial lower and upper power domain constructions P _ and P ^ commute under composition for all cpos. The common result P _ (P ^ X) and P ^ (P _ X) is the free frame over the cpo X.
منابع مشابه
An elementary proof that upper and lower powerdomain constructions commute
It was proved in [1] that lower and upper powerdomain constructions commute on all domains. In that proof, domains were represented as information systems. In [2] a rather complicated algebraic proof was given which relied on universality properties of powerdomains proved in the previous works of the author of [2]. Here we give an elementary algebraic proof that upper and lower powerdomain cons...
متن کاملOn the commutativity of the powerspace constructions
We investigate powerspace constructions on topological spaces, with a particular focus on the category of quasi-Polish spaces. We show that the upper and lower powerspaces commute on all quasi-Polish spaces, and show more generally that this commutativity is equivalent to the topological property of consonance. We then investigate powerspace constructions on the open set lattices of quasi-Polis...
متن کاملObservable Modules and Power Domain Constructions
An R-module M is observable ii all its elements can be distinguished by observing them by means of linear morphisms from M to R. We show that free observable R-modules can be explicitly described as the cores of the nal power domains with characteristic semiring R. Then, the general theory is applied to the cases of the lower and the upper semiring. All lower modules are observable, whereas the...
متن کاملSet Domains
Set domains are intended to give semantics to a data type of sets together with a wide range of useful set operations. The classical power domain constructions are shown to be inappropriate for this purpose. Lower and upper domain do not support quantiication, whereas Plotkin's domain does not contain the empty set. This is an immense defect, since the empty set is not only interesting in its o...
متن کاملRepresenting Geometric Morphisms Using Power Locale Monads
It it shown that geometric morphisms between elementary toposes can be represented as adjunctions between the corresponding categories of locales. These adjunctions are characterised as those that preserve the order enrichment, commute with the double power locale monad and whose right adjoints preserve finite coproduct. They are also characterised as those adjunctions that preserve the order e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Process. Lett.
دوره 40 شماره
صفحات -
تاریخ انتشار 1991