Bellman function, Littlewood-Paley estimates and asymptotics for the Ahlfors-Beurling operator in L(C)

نویسندگان

  • Oliver Dragičević
  • Alexander Volberg
چکیده

Estimation of L norms of Fourier multipliers is known to be hard. It is usually connected to some interesting types of PDE, see several such PDE for several Fourier multipliers on the line in a recent paper of Kalton and Verbitsky [13]. Sometimes, but much more rarely, one can establish sharp L estimates for Fourier multipliers in several variables. Riesz transforms are examples of success. They are defined in the following way. Choose k ∈ {1, ... , n}. The scalar Riesz transform Rk acts on a test function f (say, belonging to C∞ c or the Schwartz class S) by

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heating of the Ahlfors–beurling Operator, and Estimates of Its Norm

A new estimate is established for the norm of the Ahlfors–Beurling transform Tφ(z) := 1 π ∫∫ φ(ζ) dA(ζ) (ζ−z)2 in L p(dA). Namely, it is proved that ‖T‖Lp→Lp ≤ 2(p − 1) for all p ≥ 2. The method of Bellman function is used; however, the exact Bellman function of the problem has not been found. Instead, a certain approximation to the Bellman function is employed, which leads to the factor 2 on t...

متن کامل

Fourier Multipliers and Dirac Operators

We use Fourier multipliers of the Dirac operator and Cauchy transform to obtain composition theorems and integral representations. In particular we calculate the multiplier of the Π-operator. This operator is the hypercomplex version of the Beurling Ahlfors transform in the plane. The hypercomplex Beuling Ahlfors transform is a direct generalization of the Beurling Ahlfors transform and reduces...

متن کامل

The Martingale Structure of the Beurling-ahlfors Transform

The Beurling-Ahlfors operator reveals a rich structure through its representation as a martingale transform. Using elementary linear algebra and martingale inequalities, we obtain new information on this operator. In particular, Essén-type inequalities are proved for the complex Beurling-Ahlfors operator and its generalization to higher dimensions. Moreover, a new estimate of their norms is obt...

متن کامل

ar X iv : 0 81 1 . 28 54 v 1 [ m at h . FA ] 1 8 N ov 2 00 8 L p estimates for non smooth bilinear Littlewood - Paley square functions

L p estimates for non smooth bilinear Littlewood-Paley square functions on R. Abstract In this work, some non smooth bilinear analogues of linear Littlewood-Paley square functions on the real line are studied. Mainly we prove boundedness-properties in Lebesgue spaces for them. Let us consider the function φn satisfying c φn(ξ) = 1 [n,n+1] (ξ) and consider the bilinear operator Sn(f, g)(x) := R ...

متن کامل

Sharp Inequalities for the Beurling-ahlfors Transform on Radial Functions

For 1 ≤ p ≤ 2, we prove sharp weak-type (p, p) estimates for the BeurlingAhlfors operator acting on the radial function subspaces of Lp(C). A similar sharp Lp result is proved for 1 < p ≤ 2. The results are derived from martingale inequalities which are of independent interest.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003