Data Analysis with the Morse-Smale Complex: The msr Package for R
نویسندگان
چکیده
In many areas, scientists deal with increasingly high-dimensional data sets. An important aspect for these scientists is to gain a qualitative understanding of the process or system from which the data is gathered. Often, both input variables and an outcome are observed and the data can be characterized as a sample from a high-dimensional scalar function. This work presents the R package msr for exploratory data analysis of multivariate scalar functions based on the Morse-Smale complex. The Morse-Smale complex provides a topologically meaningful decomposition of the domain. The msr package implements a discrete approximation of the Morse-Smale complex for data sets. In previous work this approximation has been exploited for visualization and partition-based regression, which are both supported in the msr package. The visualization combines the Morse-Smale complex with dimension-reduction techniques for a visual summary representation that serves as a guide for interactive exploration of the high-dimensional function. In a similar fashion, the regression employs a combination of linear models based on the Morse-Smale decomposition of the domain. This regression approach yields topologically accurate estimates and facilitates interpretation of general trends and statistical comparisons between partitions. In this manner, the msr package supports high-dimensional data understanding and exploration through the Morse-Smale complex.
منابع مشابه
Morse-Smale Regression.
This paper introduces a novel partition-based regression approach that incorporates topological information. Partition-based regression typically introduce a quality-of-fit-driven decomposition of the domain. The emphasis in this work is on a topologically meaningful segmentation. Thus, the proposed regression approach is based on a segmentation induced by a discrete approximation of the Morse-...
متن کاملCombinatorial Construction of Morse - Smale Complexes
Scientific data is becoming increasingly complex, and sophisticated techniques are required for its effective analysis and visualization. The Morse-Smale complex is an efficient data structure that represents the complete gradient flow behavior of a scalar function, and can be used to identify, order, and selectively remove features. This dissertation presents two algorithms for constructing Mo...
متن کاملCertified Computation of Morse-Smale Complexes on Implicit Surfaces
The Morse-Smale complex is an important tool for global topological analysis in various problems in computational topology and data analysis. A certified algorithm for computing the Morse-Smale complexes has been presented for two-dimensional Morse-Smale systems in bounded planar domains [3]. In the current article we extend the approach in case of MorseSmale systems on two-dimensional manifold...
متن کاملMorse-Smale Analysis of Ion Diffusion in Ab Initio Battery Materials Simulations
Ab initio molecular dynamics (AIMD) simulations are increasingly useful in modeling, optimizing and synthesizing materials in energy sciences. In solving Schrödinger’s equation, they generate the electronic structure of the simulated atoms as a scalar field. However, methods for analyzing these volume data are not yet common in molecular visualization. The Morse-Smale complex is a proven, versa...
متن کاملModeling Three-Dimensional Morse and Morse-Smale Complexes
Morse and Morse-Smale complexes have been recognized as a suitable tool for modeling the topology of a manifold M through a decomposition of M induced by a scalar field f defined over M. We consider here the problem of representing, constructing and simplifying Morse and Morse-Smale complexes in 3D. We first describe and compare two data structures for encoding 3D Morse and Morse-Smale complexe...
متن کامل