A DNA polymerase from the archaeon Sulfolobus solfataricus shows sequence similarity to family B DNA polymerases.

نویسندگان

  • F M Pisani
  • C De Martino
  • M Rossi
چکیده

The gene encoding the thermostable DNA polymerase from the archaeon Sulfolobus solfataricus (strain MT 4) was isolated by means of two degenerate oligonucleotide probes. They were designed on the basis of partial enzyme amino acid sequences. The gene was found to encode a 882 residues polypeptide chain with a deduced molecular mass of about 100 kDa. By comparison with other archaeal genes, putative regulatory sites were identified in the gene-flanking regions. By computer-assisted homology search, several sequence similarities among S. solfataricus and family B DNA polymerases were found. In addition, conserved sequence motifs, implicated in the 3'-5' exonuclease activity of E. coli DNA polymerase I and shared by various family A and B DNA polymerases, were also identified. This result suggests that the proofreading domains of all these enzymes are evolutionarily related.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nucleotide sequence of the gene for a 74 kDa DNA polymerase from the archaeon Sulfolobus solfataricus.

Recently, the nucleotide sequence of a DNA polymerase gene from Sulfolobus solfataricus was reported (1). The enzyme is a 100 kDa polypeptide also possessing a 3'—5' exonuclease activity. In addition to this enzyme in cells of Sulfolobus we have detected the presence of a smaller DNA polymerase devoid of any associated nuclease activities (2). We made an attempt to clone and sequence a gene for...

متن کامل

Duplication of a truncated paralog of the family B DNA polymerase gene Aa-polB in the Agrocybe aegerita mitochondrial genome.

The Agrocybe aegerita mitochondrial genome contains a truncated family B DNA polymerase gene (Aa-polB P1) whose nucleotide sequence is 86% identical to the previously described and potentially functional Aa-polB gene. A tRNA(Met) gene occurs at the 3' end of the Aa-polB P1 gene. The Aa-polB P1 gene could result from reverse transcription of an Aa-polB mRNA primed by a tRNA(Met) followed by the ...

متن کامل

A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro.

Mechanisms that allow replicative DNA polymerases to attain high processivity are often specific to a given polymerase and cannot be generalized to others. Here we report a protein engineering-based approach to significantly improve the processivity of DNA polymerases by covalently linking the polymerase domain to a sequence non-specific dsDNA binding protein. Using Sso7d from Sulfolobus solfat...

متن کامل

The efficiency and specificity of apurinic/apyrimidinic site bypass by human DNA polymerase eta and Sulfolobus solfataricus Dpo4.

One of the most common DNA lesions arising in cells is an apurinic/apyrimidinic (AP) site resulting from base loss. Although a template strand AP site impedes DNA synthesis, translesion synthesis (TLS) DNA polymerases can bypass an AP site. Because this bypass is expected to be highly mutagenic because of loss of base coding potential, here we quantify the efficiency and the specificity of AP s...

متن کامل

Inhibition of translesion DNA polymerase by archaeal reverse gyrase

Reverse gyrase is a unique DNA topoisomerase endowed with ATP-dependent positive supercoiling activity. It is typical of microorganisms living at high temperature and might play a role in maintenance of genome stability and repair. We have identified the translesion DNA polymerase SsoPolY/Dpo4 as one partner of reverse gyrase in the hyperthermophilic archaeon Sulfolobus solfataricus. We show he...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 20 11  شماره 

صفحات  -

تاریخ انتشار 1992