Intranasal Insulin Suppresses Food Intake via Enhancement of Brain Energy Levels in Humans

نویسندگان

  • Kamila Jauch-Chara
  • Alexia Friedrich
  • Magdalena Rezmer
  • Uwe H. Melchert
  • Harald G. Scholand-Engler
  • Manfred Hallschmid
  • Kerstin M. Oltmanns
چکیده

Cerebral insulin exerts anorexic effects in humans and animals. The underlying mechanisms, however, are not clear. Because insulin physiologically facilitates glucose uptake by most tissues of the body and thereby fosters intracellular energy supply, we hypothesized that intranasal insulin reduces food consumption via enhancement of the neuroenergetic level. In a double-blind, placebo-controlled, within-subject comparison, 15 healthy men (BMI 22.2 ± 0.37 kg/m(2)) aged 22-28 years were intranasally administered insulin (40 IU) or placebo after an overnight fast. Cerebral energy metabolism was assessed by (31)P magnetic resonance spectroscopy. At 100 min after spray administration, participants consumed ad libitum from a test buffet. Our data show that intranasal insulin increases brain energy (i.e., adenosine triphosphate and phosphocreatine levels). Cerebral energy content correlates inversely with subsequent calorie intake in the control condition. Moreover, the neuroenergetic rise upon insulin administration correlates with the consecutive reduction in free-choice calorie consumption. Brain energy levels may therefore constitute a predictive value for food intake. Given that the brain synchronizes food intake behavior in dependence of its current energetic status, a future challenge in obesity treatment may be to therapeutically influence cerebral energy homeostasis. Intranasal insulin, after optimizing its application schema, seems a promising option in this regard.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intranasal Insulin Enhances Postprandial Thermogenesis and Lowers Postprandial Serum Insulin Levels in Healthy Men

OBJECTIVE Animal studies indicate a prominent role of brain insulin signaling in the regulation of peripheral energy metabolism. We determined the effect of intranasal insulin, which directly targets the brain, on glucose metabolism and energy expenditure in humans. RESEARCH DESIGN AND METHODS In a double-blind, placebo-controlled, balanced within-subject comparison, 19 healthy normal-weight ...

متن کامل

Intranasal insulin suppresses endogenous glucose production in humans compared with placebo in the presence of similar venous insulin concentrations.

Intranasal insulin (INI) has been shown to modulate food intake and food-related activity in the central nervous system in humans. Because INI increases insulin concentration in the cerebrospinal fluid, these effects have been postulated to be mediated via insulin action in the brain, although peripheral effects of insulin cannot be excluded. INI has been shown to lower plasma glucose in some s...

متن کامل

Central Nervous Insulin Administration before Nocturnal Sleep Decreases Breakfast Intake in Healthy Young and Elderly Subjects

Peripheral insulin acts on the brain to regulate metabolic functions, in particular decreasing food intake and body weight. This concept has been supported by studies in humans relying on the intranasal route of administration, a method that permits the direct permeation of insulin into the CNS without substantial absorption into the blood stream. We investigated if intranasal insulin administr...

متن کامل

Postprandial Administration of Intranasal Insulin Intensifies Satiety and Reduces Intake of Palatable Snacks in Women

The role of brain insulin signaling in the control of food intake in humans has not been thoroughly defined. We hypothesized that the hormone contributes to the postprandial regulation of appetite for palatable food, and assessed the effects on appetite and snack intake of postprandial versus fasted intranasal insulin administration to the brain in healthy women. Two groups of subjects were int...

متن کامل

Is Insulin Action in the Brain Clinically Relevant?

Last year marked the ninetieth anniversary of the discovery of insulin by Nobel Laureates Frederick Banting and John Macleod, as well as Charles Best and James Bertram Collip. The initial success of insulin’s ability to lower glucose levels in type 1 diabetes is now shadowed by the urgent need to characterize insulin resistance and secretion defects in type 2 diabetes and obesity. Insulin trigg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2012