Degree of population diversity - a perspective on premature convergence in genetic algorithms and its Markov chain analysis
نویسندگان
چکیده
In this paper, a concept of degree of population diversity is introduced to quantitatively characterize and theoretically analyze the problem of premature convergence in genetic algorithms (GAs) within the framework of Markov chain. Under the assumption that the mutation probability is zero, the search ability of GA is discussed. It is proved that the degree of population diversity converges to zero with probability one so that the search ability of a GA decreases and premature convergence occurs. Moreover, an explicit formula for the conditional probability of allele loss at a certain bit position is established to show the relationships between premature convergence and the GA parameters, such as population size, mutation probability, and some population statistics. The formula also partly answers the questions of to where a GA most likely converges. The theoretical results are all supported by the simulation experiments.
منابع مشابه
Chaotic-based Particle Swarm Optimization with Inertia Weight for Optimization Tasks
Among variety of meta-heuristic population-based search algorithms, particle swarm optimization (PSO) with adaptive inertia weight (AIW) has been considered as a versatile optimization tool, which incorporates the experience of the whole swarm into the movement of particles. Although the exploitation ability of this algorithm is great, it cannot comprehensively explore the search space and may ...
متن کاملTheoretical Analysis of Mutation-Adaptive Evolutionary Algorithms
Adaptive evolutionary algorithms require a more sophisticated modeling than their static-parameter counterparts. Taking into account the current population is not enough when implementing parameter-adaptation rules based on success rates (evolution strategies) or on premature convergence (genetic algorithms). Instead of Markov chains, we use random systems with complete connections - accounting...
متن کاملA Study of Normalized Population Diversity in Particle Swarm Optimization
The values and velocities of a Particle swarm optimization (PSO) algorithm can be recorded as series of matrix and its population diversity can be considered as an observation of the distribution of matrix elements. Each dimension is measured separately in the dimension-wise diversity, on the contrary, the element-wise diversity measures all dimension together. In this paper, PSO algorithm is f...
متن کاملConvergence Analysis of Quantum Genetic Algorithm
It is an important and a complicated task to investigate the convergence of a new genetic algorithm based on quantum mechanics concepts including qubits and superposition of states, namely Quantum Genetic Algorithm, in the field of evolutionary computation. This paper analyzes convergence property of quantum genetic algorithm which uses its special quantum operator instead of canonical operator...
متن کاملPreventing Premature Convergence to Local Optima in Genetic Algorithms via Random Offspring Generation
The Genetic Algorithms (GAs) paradigm is being used increasingly in search and optimization problems. The method has shown to be efficient and robust in a considerable number of scientific domains, where the complexity and cardinality of the problems considered elected themselves as key factors to be taken into account. However, there are still some insufficiencies; indeed, one of the major pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on neural networks
دوره 8 5 شماره
صفحات -
تاریخ انتشار 1997