Proteomics and the Inner Ear
نویسنده
چکیده
The inner ear, one of the most complex organs, contains within its bony shell three sensory systems, the evolutionary oldest gravity receptor system, the three semicircular canals for the detection of angular acceleration, and the auditory system--unrivaled in sensitivity and frequency discrimination. All three systems are susceptible to a host of afflictions affecting the quality of life for all of us. In the first part of this review we present an introduction to the milestones of inner ear research to pave the way for understanding the complexities of a proteomics approach to the ear. Minute sensory structures, surrounded by large fluid spaces and a hard bony shell, pose extreme challenges to the ear researcher. In spite of these obstacles, a powerful preparatory technique was developed, whereby precisely defined microscopic tissue elements can be isolated and analyzed, while maintaining the biochemical state representative of the in vivo conditions. The second part consists of a discussion of proteomics as a tool in the elucidation of basic and pathologic mechanisms, diagnosis of disease, as well as treatment. Examples are the organ of Corti proteins OCP1 and OCP2, oncomodulin, a highly specific calcium-binding protein, and several disease entities, Meniere's disease, benign paroxysmal positional vertigo, and perilymphatic fistula.
منابع مشابه
Effect of replacing cochlea contour with inner ear contour on cochlea dose-volume calculations in conventional 2 dimensional and conformal 3 dimensional radiotherapy of brain
Introduction: Sensorineural hearing loss (SNHL) is one of the possible complications of radiotherapy treatment of brain tumors. The auditory system of patients with brain tumors often is placed inside of radiation field and receives a significant amount of radiation dose resulting in hearing loss. The purpose of this study was to compare contouring and delivery dose to cochlea...
متن کاملAutoimmune Inner Ear Disease- A Clinical Viewpoint
Recent developments in medicine have given us a better insight into a group of disorders known as autoimmune diseases. In particular, advances have occurred in our understanding of the Autoimmune Inner Ear Disease (AIED). In this article, the authors review the different postulated theories in the pathogenesis of this disease. The clinical presentation, the available para-clinical diagnostic to...
متن کاملSHIELD: an integrative gene expression database for inner ear research
The inner ear is a highly specialized mechanosensitive organ responsible for hearing and balance. Its small size and difficulty in harvesting sufficient tissue has hindered the progress of molecular studies. The protein components of mechanotransduction, the molecular biology of inner ear development and the genetic causes of many hereditary hearing and balance disorders remain largely unknown....
متن کاملIntegration of Transcriptomics, Proteomics, and MicroRNA Analyses Reveals Novel MicroRNA Regulation of Targets in the Mammalian Inner Ear
We have employed a novel approach for the identification of functionally important microRNA (miRNA)-target interactions, integrating miRNA, transcriptome and proteome profiles and advanced in silico analysis using the FAME algorithm. Since miRNAs play a crucial role in the inner ear, demonstrated by the discovery of mutations in a miRNA leading to human and mouse deafness, we applied this appro...
متن کاملAlbumin-Like Protein is the Major Protein Constituent of Luminal Fluid in the Human Endolymphatic Sac
The endolymphatic sac (ES) is an inner ear organ that is connected to the cochleo-vestibular system through the endolymphatic duct. The luminal fluid of the ES contains a much higher concentration of proteins than any other compartment of the inner ear. This high protein concentration likely contributes to inner ear fluid volume regulation by creating an osmotic gradient between the ES lumen an...
متن کامل