Unscented Kalman filter approach to tracking a moving interfacial boundary in sedimentation processes using three-dimensional electrical impedance tomography.
نویسندگان
چکیده
The monitoring of solid-fluid suspensions under the influence of gravity is widely used in industrial processes. By considering sedimentation layers with different electrical properties, non-invasive methods such as electrical impedance tomography (EIT) can be used to estimate the settling curves and velocities. In recent EIT studies, the problem of estimating the locations of phase interfaces and phase conductivities has been treated as a nonlinear state estimation problem and the extended Kalman filter (EKF) has been successfully applied. However, the EKF is based on a Gaussian assumption and requires a linearized measurement model. The linearization (or derivation of the Jacobian) is possible when there are no discontinuities in the system. Furthermore, having a complex phase interface representation makes derivation of the Jacobian a tedious task. Therefore, in this paper, we explore the unscented Kalman filter (UKF) as an alternative approach for estimating phase interfaces and conductivities in sedimentation processes. The UKF uses a nonlinear measurement model and is therefore more accurate. In order to justify the proposed approach, extensive numerical experiments have been performed and a comparative analysis with the EKF is provided.
منابع مشابه
Three-dimensional phase boundary estimation in sedimentation process using electrical impedance tomography with the aid of unscented Kalman filter
This work is related to interfacial phase bounadry estimation in sedimentation monitoring using electrical impedance tomography. The fluid is assumed to settle into three different phases separated by sharp interfacial boundary. The time evolution of the phase interface gives important information about the sedimentation process which can be used to control and optimize the sedimentation proces...
متن کاملDoppler and bearing tracking using fuzzy adaptive unscented Kalman filter
The topic of Doppler and Bearing Tracking (DBT) problem is to achieve a target trajectory using the Doppler and Bearing measurements. The difficulty of DBT problem comes from the nonlinearity terms exposed in the measurement equations. Several techniques were studied to deal with this topic, such as the unscented Kalman filter. Nevertheless, the performance of the filter depends directly on the...
متن کاملEstimation of LOS Rates for Target Tracking Problems using EKF and UKF Algorithms- a Comparative Study
One of the most important problem in target tracking is Line Of Sight (LOS) rate estimation for using from PN (proportional navigation) guidance law. This paper deals on estimation of position and LOS rates of target with respect to the pursuer from available noisy RF seeker and tracker measurements. Due to many important for exact estimation on tracking problems must target position and Line O...
متن کاملRotated Unscented Kalman Filter for Two State Nonlinear Systems
In the several past years, Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) havebecame basic algorithm for state-variables and parameters estimation of discrete nonlinear systems.The UKF has consistently outperformed for estimation. Sometimes least estimation error doesn't yieldwith UKF for the most nonlinear systems. In this paper, we use a new approach for a two variablestate no...
متن کاملA New Modified Particle Filter With Application in Target Tracking
The particle filter (PF) is a novel technique that has sufficiently good estimation results for the nonlinear/non-Gaussian systems. However, PF is inconsistent that caused mainly by loss of particle diversity in resampling step and unknown a priori knowledge of the noise statistics. This paper introduces a new modified particle filter called adaptive unscented particle filter (AUPF) to overcome th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
دوره 367 1900 شماره
صفحات -
تاریخ انتشار 2009