A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes.
نویسندگان
چکیده
Synthesis of flavonoid pigments in flowers requires the co-ordinated expression of genes encoding enzymes in th phenylpropanoid biosynthetic pathway. Some cis-elements involved in the transcriptional control of these genes have been defined. We report binding of petal-specific activities from tobacco and Antirrhinum majus (snapdragon) to an element conserved in promoters of phenylpropanoid biosynthetic genes and implicated in expression in flowers. These binding activities were inhibited by antibodies raised against Myb305, a flower-specific Myb protein previously cloned from Antirrhinum by sequence homology. Myb305 bound to the same element and formed a DNA-protein complex with the same mobility as the Antirrhinum petal protein in electrophoretic mobility shift experiments. Myb305 activated expression from its binding site in yeast and in tobacco protoplasts. In protoplasts, activation also required a G-box-like element, suggesting co-operation with other elements and factors. The results strongly suggest a role for Myb305-related proteins in the activation of phenylpropanoid biosynthetic genes in flowers. This is consistent with the genetically demonstrated role of plant Myb proteins in the regulation of genes involved in flavonoid synthesis.
منابع مشابه
The AmMYB308 and AmMYB330 transcription factors from antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco
MYB-related transcription factors are known to regulate different branches of flavonoid metabolism in plants and are believed to play wider roles in the regulation of phenylpropanoid metabolism in general. Here, we demonstrate that overexpression of two MYB genes from Antirrhinum represses phenolic acid metabolism and lignin biosynthesis in transgenic tobacco plants. The inhibition of this bran...
متن کاملPtoMYB156 is involved in negative regulation of phenylpropanoid metabolism and secondary cell wall biosynthesis during wood formation in poplar
Some R2R3 MYB transcription factors have been shown to be major regulators of phenylpropanoid biosynthetic pathway and impact secondary wall formation in plants. In this study, we describe the functional characterization of PtoMYB156, encoding a R2R3-MYB transcription factor, from Populus tomentosa. Expression pattern analysis showed that PtoMYB156 is widely expressed in all tissues examined, b...
متن کاملThe Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis.
Comprehensive functional data on plant R2R3-MYB transcription factors is still scarce compared to the manifold of their occurrence. Here, we identified the Arabidopsis (Arabidopsis thaliana) R2R3-MYB transcription factor MYB12 as a flavonol-specific activator of flavonoid biosynthesis. Transient expression in Arabidopsis protoplasts revealed a high degree of functional similarity between MYB12 ...
متن کاملEOBII, a Gene Encoding a Flower-Specific Regulator of Phenylpropanoid Volatiles’ Biosynthesis in Petunia C W
Floral scent, which is determined by a complex mixture of low molecular weight volatile molecules, plays a major role in the plant’s life cycle. Phenylpropanoid volatiles are the main determinants of floral scent in petunia (Petunia hybrida). A screen using virus-induced gene silencing for regulators of scent production in petunia flowers yielded a novel R2R3-MYB–like regulatory factor of pheny...
متن کاملActivation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis.
Plants produce a wide array of natural products, many of which are likely to be useful bioactive structures. Unfortunately, these complex natural products usually occur at very low abundance and with restricted tissue distribution, thereby hindering their evaluation. Here, we report a novel approach for enhancing the accumulation of natural products based on activation tagging by Agrobacterium-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 13 1 شماره
صفحات -
تاریخ انتشار 1994