Group Actions on Algebras and the Graded Lie Structure of Hochschild Cohomology

نویسندگان

  • ANNE V. SHEPLER
  • SARAH WITHERSPOON
چکیده

Hochschild cohomology governs deformations of algebras, and its graded Lie structure plays a vital role. We study this structure for the Hochschild cohomology of the skew group algebra formed by a finite group acting on an algebra by automorphisms. We examine the Gerstenhaber bracket with a view toward deformations and developing bracket formulas. We then focus on the linear group actions and polynomial algebras that arise in orbifold theory and representation theory; deformations in this context include graded Hecke algebras and symplectic reflection algebras. We give some general results describing when brackets are zero for polynomial skew group algebras, which allow us in particular to find noncommutative Poisson structures. For abelian groups, we express the bracket using inner products of group characters. Lastly, we interpret results for graded Hecke algebras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gerstenhaber Brackets for Skew Group Algebras

Hochschild cohomology governs deformations of algebras, and its graded Lie structure plays a vital role. We study this structure for the Hochschild cohomology of the skew group algebra formed by a finite group acting on an algebra by automorphisms. We examine the Gerstenhaber bracket with a view toward deformations and developing bracket formulas. We then focus on the linear group actions and p...

متن کامل

The Lie Module Structure on the Hochschild Cohomology Groups of Monomial Algebras with Radical Square Zero

We study the Lie module structure given by the Gerstenhaber bracket on the Hochschild cohomology groups of a monomial algebra with radical square zero. The description of such Lie module structure will be given in terms of the combinatorics of the quiver. The Lie module structure will be related to the classification of finite dimensional modules over simple Lie algebras when the quiver is give...

متن کامل

Drinfeld Orbifold Algebras

We define Drinfeld orbifold algebras as filtered algebras deforming the skew group algebra (semi-direct product) arising from the action of a finite group on a polynomial ring. They simultaneously generalize Weyl algebras, graded (or Drinfeld) Hecke algebras, rational Cherednik algebras, symplectic reflection algebras, and universal enveloping algebras of Lie algebras with group actions. We giv...

متن کامل

Note on Cohomology of Color Hopf and Lie Algebras

Let A be a (G, χ)-Hopf algebra with bijection antipode and let M be a G-graded A-bimodule. We prove that there exists an isomorphism HH∗gr(A,M) ∼= Ext ∗ A-gr(K, (M)), where K is viewed as the trivial graded A-module via the counit of A, M is the adjoint A-module associated to the graded A-bimodule M and HHgr denotes the G-graded Hochschild cohomology. As an application, we deduce that the cohom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010