Simultaneous Active Learning of Classifiers & Attributes via Relative Feedback
نویسندگان
چکیده
Active learning provides useful tools to reduce annotation costs without compromising classifier performance. However it traditionally views the supervisor simply as a labeling machine. Recently a new interactive learning paradigm was introduced that allows the supervisor to additionally convey useful domain knowledge using attributes. The learner first conveys its belief about an actively chosen image e.g. “I think this is a forest, what do you think?”. If the learner is wrong, the supervisor provides an explanation e.g. “No, this is too open to be a forest”. With access to a pre-trained set of relative attribute predictors, the learner fetches all unlabeled images more open than the query image, and uses them as negative examples of forests to update its classifier. This rich human-machine communication leads to better classification performance. In this work, we propose three improvements over this set-up. First, we incorporate a weighting scheme that instead of making a hard decision reasons about the likelihood of an image being a negative example. Second, we do away with pre-trained attributes and instead learn the attribute models on the fly, alleviating overhead and restrictions of a pre-determined attribute vocabulary. Finally, we propose an active learning framework that accounts for not just the labelbut also the attributes-based feedback while selecting the next query image. We demonstrate significant improvement in classification accuracy on faces and shoes. We also collect and make available the largest relative attributes dataset containing 29 attributes of faces from 60 categories.
منابع مشابه
Relative Attributes for Enhanced Human-Machine Communication
We propose to model relative attributes that capture the relationships between images and objects in terms of human-nameable visual properties. For example, the models can capture that animal A is ‘furrier’ than animal B, or image X is ‘brighter’ than image B. Given training data stating how object/scene categories relate according to different attributes, we learn a ranking function per attrib...
متن کاملSupport Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran
Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...
متن کاملContextual Interference Effect in Bandwidth and Self-Control Feedback Conditions on Relative and Absolute Timing Learning
This study aims to better understand the effect of practice schedule and feedback providing types. In two separate experiments the contextual interference effect in bandwidth and self-control feedback conditions on relative and absolute timing learning was examined. In experiment I, the effect of contextual interference using bandwidth and self-control feedback on absolute timing learning (para...
متن کاملBootstrapping Fine-Grained Classifiers: Active Learning with a Crowd in the Loop
We propose an iterative crowd-enabled active learning algorithm for building high-precision visual classifiers from unlabeled images. Our method employs domain experts to identify a small number of examples of a specific visual event. These expert-labeled examples seed a classifier, which is then iteratively trained by active querying of a non-expert crowd. These non-experts actively refine the...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013