Na,K-ATPase α2 activity in mammalian skeletal muscle T-tubules is acutely stimulated by extracellular K+
نویسندگان
چکیده
The Na,K-ATPase α2 isoform is the predominant Na,K-ATPase in adult skeletal muscle and the sole Na,K-ATPase in the transverse tubules (T-tubules). In quiescent muscles, the α2 isozyme operates substantially below its maximal transport capacity. Unlike the α1 isoform, the α2 isoform is not required for maintaining resting ion gradients or the resting membrane potential, canonical roles of the Na,K-ATPase in most other cells. However, α2 activity is stimulated immediately upon the start of contraction and, in working muscles, its contribution is crucial to maintaining excitation and resisting fatigue. Here, we show that α2 activity is determined in part by the K+ concentration in the T-tubules, through its K+ substrate affinity. Apparent K+ affinity was determined from measurements of the K1/2 for K+ activation of pump current in intact, voltage-clamped mouse flexor digitorum brevis muscle fibers. Pump current generated by the α2 Na,K-ATPase, Ip, was identified as the outward current activated by K+ and inhibited by micromolar ouabain. Ip was outward at all potentials studied (-90 to -30 mV) and increased with depolarization in the subthreshold range, -90 to -50 mV. The Q10 was 2.1 over the range of 22-37°C. The K1/2,K of Ip was 4.3±0.3 mM at -90 mV and was relatively voltage independent. This K+ affinity is lower than that reported for other cell types but closely matches the dynamic range of extracellular K+ concentrations in the T-tubules. During muscle contraction, T-tubule luminal K+ increases in proportion to the frequency and duration of action potential firing. This K1/2,K predicts a low fractional occupancy of K+ substrate sites at the resting extracellular K+ concentration, with occupancy increasing in proportion to the frequency of membrane excitation. The stimulation of preexisting pumps by greater K+ site occupancy thus provides a rapid mechanism for increasing α2 activity in working muscles.
منابع مشابه
Na , K - ATPase 2 activity in mammalian skeletal muscle T - tubules is acutely stimulated by extracellular
The Na,K-ATPase is an essential enzyme in the plasma membrane of all animal cells. The Na,K-ATPase catalyzes the efflux of three Na and the influx of two K ions per molecule of ATP hydrolyzed, thereby maintaining the steep transmembrane concentration gradients for Na and K that play a vital role in many biological processes. The functional enzyme is a heteromer composed of a primary catalytic ...
متن کاملTissue-specific role of the Na,K-ATPase α2 isozyme in skeletal muscle.
The Na,K-ATPase α2 isozyme is the major Na,K-ATPase of mammalian skeletal muscle. This distribution is unique compared with most other cells, which express mainly the Na,K-ATPase α1 isoform, but its functional significance is not known. We developed a gene-targeted mouse (skα2(-/-)) in which the α2 gene (Atp1a2) is knocked out in the skeletal muscles, and examined the consequences for exercise ...
متن کاملDistinct α2 Na,K-ATPase membrane pools are differently involved in early skeletal muscle remodeling during disuse
The Na,K-ATPase is essential for the contractile function of skeletal muscle, which expresses the α1 and α2 subunit isoforms of Na,K-ATPase. The α2 isozyme is predominant in adult skeletal muscles and makes a greater contribution in working compared with noncontracting muscles. Hindlimb suspension (HS) is a widely used model of muscle disuse that leads to progressive atrophy of postural skeleta...
متن کاملO-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation
Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...
متن کاملIsoform-Specific Na,K-ATPase Alterations Precede Disuse-Induced Atrophy of Rat Soleus Muscle
This study examines the isoform-specific effects of short-term hindlimb suspension (HS) on the Na,K-ATPase in rat soleus muscle. Rats were exposed to 24-72 h of HS and we analyzed the consequences on soleus muscle mass and contractile parameters; excitability and the resting membrane potential (RMP) of muscle fibers; the electrogenic activity, protein, and mRNA content of the α1 and α2 Na,K-ATP...
متن کامل