A Guide to Learning Arithmetic Circuits

نویسنده

  • Ilya Volkovich
چکیده

An arithmetic circuit is a directed acyclic graph in which the operations are {+,×}. In this paper, we exhibit several connections between learning algorithms for arithmetic circuits and other problems. In particular, we show that: • Efficient learning algorithms for arithmetic circuit classes imply explicit exponential lower bounds. • General circuits and formulas can be learned efficiently with membership and equivalence queries iff they can be learned efficiently with membership queries only. • Low-query learning algorithms for certain classes of circuits imply explicit rigid matrices. • Learning algorithms for multilinear depth-3 and depth-4 circuits must compute square roots.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A High-Speed Dual-Bit Parallel Adder based on Carbon Nanotube ‎FET technology for use in arithmetic units

In this paper, a Dual-Bit Parallel Adder (DBPA) based on minority function using Carbon-Nanotube Field-Effect Transistor (CNFET) is proposed. The possibility of having several threshold voltage (Vt) levels by CNFETs leading to wide use of them in designing of digital circuits. The main goal of designing proposed DBPA is to reduce critical path delay in adder circuits. The proposed design positi...

متن کامل

Learning Restricted Models of Arithmetic Circuits

We present a polynomial time algorithm for learning a large class of algebraic models of computation. We show that any arithmetic circuit whose partial derivatives induce a low-dimensional vector space is exactly learnable from membership and equivalence queries. As a consequence, we obtain polynomial-time algorithms for learning restricted algebraic branching programs as well as noncommutative...

متن کامل

The Partial Derivative method in Arithmetic Circuit Complexity

In this thesis we survey the technique of analyzing the partial derivatives of a polynomial to prove lower bounds for restricted classes of arithmetic circuits. The technique is also useful in designing algorithms for learning arithmetic circuits and we study the application of the method of partial derivatives in this setting. We also look at polynomial identity testing and survey an e cient a...

متن کامل

Convolutional Rectifier Networks as Generalized Tensor Decompositions

Convolutional rectifier networks, i.e. convolutional neural networks with rectified linear activation and max or average pooling, are the cornerstone of modern deep learning. However, despite their wide use and success, our theoretical understanding of the expressive properties that drive these networks is partial at best. On other hand, we have a much firmer grasp of these issues in the world ...

متن کامل

Attribute-Based Encryption for Arithmetic Circuits

We present an Attribute Based Encryption system where access policies are expressed as polynomial size arithmetic circuits. We prove security against arbitrary collusions of users based on the learning with errors problem on integer lattices. The system has two additional useful properties: first, it naturally handles arithmetic circuits with arbitrary fan-in (and fan-out) gates. Second, secret...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2015