A Time-Varying Parameter Vector Autoregression Model for Forecasting Emerging Market Exchange Rates
نویسنده
چکیده
In this study, a vector autoregression (VAR) model with time-varying parameters (TVP) to predict the daily Indian rupee (INR)/US dollar (USD) exchange rates for the Indian economy is developed. The method is based on characterization of the TVP as an optimal control problem. The methodology is a blend of the flexible least squares and Kalman filter techniques. The out-of-sample forecasting performance of the TVP-VAR model is evaluated against the simple VAR and ARIMA models, by employing a cross-validation process and metrics such as mean absolute error, root mean square error, and directional accuracy. Outof-sample results in terms of conventional forecast evaluation statistics and directional accuracy show TVP-VAR model consistently outperforms the simple VAR and ARIMA models.
منابع مشابه
Comparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in Iran
This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...
متن کاملForecasting with time-varying vector autoregressive models
The purpose of this paper is to propose a time-varying vector autoregressive model (TV-VAR) for forecasting multivariate time series. The model is casted into a state-space form that allows flexible description and analysis. The volatility covariance matrix of the time series is modelled via inverted Wishart and singular multivariate beta distributions allowing a fully conjugate Bayesian infere...
متن کاملModeling and Forecasting Iranian Inflation with Time Varying BVAR Models
This paper investigates the forecasting performance of different time-varying BVAR models for Iranian inflation. Forecast accuracy of a BVAR model with Litterman’s prior compared with a time-varying BVAR model (a version introduced by Doan et al., 1984); and a modified time-varying BVAR model, where the autoregressive coefficients are held constant and only the deterministic components are allo...
متن کاملMacroeconomic Determinants of the Behavior of Dhaka Stock Exchange (DSE)
Many past studies documented a strong evidence of a linkage between stock prices and macroeconomic activities across different stock markets and time horizons. However, most of these studies have focused on developed economies and highlighted the impact of either domestic variables or a few global factors. In recent times, the impact of global macroeconomic factors upon stock returns has garner...
متن کاملMacroeconomic Shocks and Malaysian Tourism Industry: Evidence from a Structural VAR Model
Abstract his study employs a structural vector autoregression (SVAR) model to investigate the macroeconomic shocks on Malaysian tourism industry, especially how the economy dynamically responds to oil price shocks, exchange rates, changes in price level, exports, economic growth and tourism income during the study time period from January 2001 to December 2012. The results indicate that oil...
متن کامل