Juglone inactivates cysteine-rich proteins required for progression through mitosis.

نویسندگان

  • Claudia Fila
  • Corina Metz
  • Peter van der Sluijs
چکیده

The parvulin peptidyl-prolyl isomerase Pin1 catalyzes cis-trans isomerization of p(S/T)-P bonds and might alter conformation and function of client proteins. Since the trans conformation of p(S/T)-P bonds is preferred by protein phosphatase 2A (PP2A), Pin1 may facilitate PP2A-mediated dephosphorylation. Juglone irreversibly inhibits parvulins and is often used to study the function of Pin1 in vivo. The drug prevents dephosphorylation of mitotic phosphoproteins, perhaps because they bind Pin1 and are dephosphorylated by PP2A. We show here however that juglone inhibited post-mitotic dephosphorylation and the exit of mitosis, independent of Pin1. This effect involved covalent modification of sulfhydryl groups in proteins essential for metaphase/anaphase transition. Particularly cytoplasmic proteins with a high cysteine content were vulnerable to the drug. Alkylation of sulfhydryl groups altered the conformation of such proteins, as evidenced by the disappearance of antibody epitopes on tubulin and the mitotic checkpoint component BubR1. The latter activates the anaphase-promoting complex/cyclosome, which degrades regulatory proteins, such as cyclin B1 and securins, and is required for mitotic exit. Indeed, juglone-treated cells failed to assemble a mitotic spindle, which correlated with perturbed microtubule dynamics, loss of immunodetectable tubulin, and formation of tubulin aggregates. Juglone also prevented degradation of cyclin B1, independently of the Mps1-controlled mitotic spindle checkpoint. Since juglone affected cell cycle progression at several levels, more specific drugs need to be developed for studies of Pin1 function in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Refolding Process of Cysteine-Rich Proteins: Chitinase as a Model

Background: Recombinant proteins overexpressed in E. coli are usually deposited in inclusion bodies. Cysteines in the protein contribute to this process. Inter- and intra- molecular disulfide bonds in chitinase, a cysteine-rich protein, cause aggregation when the recombinant protein is overexpressed in E. coli. Hence, aggregated proteins should be solubilized and allowed to refold to obtain nat...

متن کامل

Vertebrate p34cdc2 phosphorylation site mutants: effects upon cell cycle progression in the fission yeast Schizosaccharomyces pombe.

We have used the fission yeast Schizosaccharomyces pombe to analyse the effects of in vitro mutagenesis of the four known phosphorylation sites in the chicken p34(cdc2) protein, Thr 14, Tyr 15, Thr 161 and Ser 277, upon cell cycle progression. We have studied both the effect of overexpression of mutant proteins in a cdc2+ background and assayed their ability to rescue null and temperature-sensi...

متن کامل

The ubiquitin ligase CRL2ZYG11 targets cyclin B1 for degradation in a conserved pathway that facilitates mitotic slippage

The anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase is known to target the degradation of cyclin B1, which is crucial for mitotic progression in animal cells. In this study, we show that the ubiquitin ligase CRL2ZYG-11 redundantly targets the degradation of cyclin B1 in Caenorhabditis elegans and human cells. In C. elegans, both CRL2ZYG-11 and APC/C are required for proper progres...

متن کامل

SNX9, SNX18 and SNX33 are required for progression through and completion of mitosis.

Mitosis involves considerable membrane remodelling and vesicular trafficking to generate two independent cells. Consequently, endocytosis and endocytic proteins are required for efficient mitotic progression and completion. Several endocytic proteins also participate in mitosis in an endocytosis-independent manner. Here, we report that the sorting nexin 9 (SNX9) subfamily members - SNX9, SNX18 ...

متن کامل

Phosphorylation-dependent proline isomerization catalyzed by Pin1 is essential for tumor cell survival and entry into mitosis.

Pin1, a member of the parvulin family of peptidyl-prolyl cis-trans isomerases (PPIases) has been implicated in the G2-M transition of the mammalian cell cycle. Pin1 interacts with a series of mitotic phosphoproteins, including Polo-like kinase-1, Cdc25C, and Cdc27, and is thought to act as a phosphorylation-dependent PPIase for these target molecules. Pin1 recognizes phosphorylated serine-proli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 283 31  شماره 

صفحات  -

تاریخ انتشار 2008