Differential regulation of hyaluronic acid synthase isoforms in human saphenous vein smooth muscle cells: possible implications for vein graft stenosis.
نویسندگان
چکیده
Autologous saphenous vein bypass grafts (SVG) are frequently compromised by neointimal thickening and subsequent atherosclerosis eventually leading to graft failure. Hyaluronic acid (HA) generated by smooth muscle cells (SMC) is thought to augment the progression of atherosclerosis. The aim of the present study was (1) to investigate HA accumulation in native and explanted arterialized SVG, (2) to identify factors that regulate HA synthase (HAS) expression and HA synthesis, and (3) to study the function of the HAS2 isoform. In native SVG, expression of all 3 HAS isoforms was detected by RT-PCR. Histochemistry revealed that native and arterialized human saphenous vein segments were characterized by marked deposition of HA in association with SMC. Interestingly, in contrast to native SVG, cyclooxygenase (COX)-2 expression by SMC and macrophages was detected only in arterialized SVG. In vitro in human venous SMC HAS isoforms were found to be differentially regulated. HAS2, HAS1, and HA synthesis were strongly induced by vasodilatory prostaglandins via Gs-coupled prostaglandin receptors. In addition, thrombin induced HAS2 via activation of PAR1 and interleukin 1beta was the only factor that induced HAS3. By small interfering RNA against HAS2, it was shown that HAS2 mediated HA synthesis is critically involved in cell cycle progression through G1/S phase and SMC proliferation. In conclusion, the present study shows that HA-rich extracellular matrix is maintained after arterialization of vein grafts and might contribute to graft failure because of its proproliferative function in venous SMC. Furthermore, COX-2-dependent prostaglandins may play a key role in the regulation of HA synthesis in arterialized vein grafts.
منابع مشابه
Smooth Muscle Cells : Possible Implications for Vein Graft Stenosis Differential Regulation of Hyaluronic Acid Synthase Isoforms in Human Saphenous Vein
Autologous saphenous vein bypass grafts (SVG) are frequently compromised by neointimal thickening and subsequent atherosclerosis eventually leading to graft failure. Hyaluronic acid (HA) generated by smooth muscle cells (SMC) is thought to augment the progression of atherosclerosis. The aim of the present study was (1) to investigate HA accumulation in native and explanted arterialized SVG, (2)...
متن کاملNitric oxide synthase gene transfer inhibits biological features of bypass graft disease in the human saphenous vein.
BACKGROUND Bypass graft disease is related to proliferation and migration of vascular smooth muscle cells and to platelet activation with thrombus formation. Nitric oxide inhibits these biological responses; it has never been demonstrated, however, whether this occurs in intact human vascular tissue after endothelial nitric oxide synthase gene transfer. METHODS We examined whether endothelial...
متن کاملECM-related gene expression profile in vascular smooth muscle cells from human saphenous vein and internal thoracic artery
UNLABELLED Currently, Saphenous vein (SV) and internal thoracic artery (ITA) are still the most common graft materials in Coronary Artery Bypass Grafting (CABG) whereas SV graft have a lower long-term patency than ITA. Vascular smooth muscle cells (VSMCs) phenotype conversion, proliferation and migration may play a key role in mechanism of vein graft restenosis. To explore differential gene exp...
متن کاملUpregulation of miR-126-3p promotes human saphenous vein endothelial cell proliferation in vitro and prevents vein graft neointimal formation ex vivo and in vivo
Poor long-term patency of vein grafts remains an obstacle in coronary artery bypass grafting (CABG) surgery using an autologous saphenous vein graft. Recent studies have revealed that miR-126-3p promotes vascular integrity and angiogenesis. We aimed to identify the role of miR-126-3p in the setting of vein graft disease and investigate the value of miR-126-3p agomir as a future gene therapy in ...
متن کاملMechanical stretch induces phosphorylation of p38-MAPK and apoptosis in human saphenous vein.
OBJECTIVE Failure of saphenous vein grafts remains a major limitation of coronary bypass surgery. The aims of the present study were to determine whether pressure distension of human saphenous vein induces the activation of p38-MAPK and to determine its role in apoptosis. METHODS AND RESULTS Phosphorylated p38 was detected at basal levels in human saphenous vein obtained immediately after har...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 98 1 شماره
صفحات -
تاریخ انتشار 2006