On traced monoidal closed categories

نویسنده

  • Masahito Hasegawa
چکیده

The structure theorem of Joyal, Street and Verity says that every traced monoidal category C arises as a monoidal full subcategory of the tortile monoidal category IntC. In this paper we focus on a simple observation that a traced monoidal category C is closed if and only if the canonical inclusion from C into IntC has a right adjoint. Thus, every traced monoidal closed category arises as a monoidal co-reflexive full subcategory of a tortile monoidal category. From this, we derive a series of facts on traced models of linear logic, and some on models of fixed-point computation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Foundation of Attribute Grammars in Traced Symmetric Monoidal Categories

In this paper we propose a new categorical formulation of attribute grammars in traced symmetric monoidal categories. The new formulation, called monoidal attribute grammars, concisely captures the essence of the classical attribute grammars. We study monoidal attribute grammars in two categories: Rel and ωCPPO. It turns out that in Rel monoidal attribute grammars correspond to the graphtheoret...

متن کامل

The symmetric monoidal closed category of cpo $M$-sets

In this paper, we show that the category of directed complete posets with bottom elements (cpos) endowed with an action of a monoid $M$ on them forms a monoidal category. It is also proved that this category is symmetric closed.

متن کامل

Traced monoidal categories BY ANDRE JOYAL

This paper introduces axioms for an abstract trace on a monoidal category. This trace can be interpreted in various contexts where it could alternatively be called contraction, feedback, Markov trace or braid closure. Each full submonoidal category of a tortile (or ribbon) monoidal category admits a canonical trace. We prove the structure theorem that every traced monoidal category arises in th...

متن کامل

A note on the biadjunction between 2-categories of traced monoidal categories and tortile monoidal categories

We illustrate a minor error in the biadjointness result for 2-categories of traced monoidal categories and tortile monoidal categories stated by Joyal, Street and Verity. We also show that the biadjointness holds after suitably changing the definition of 2-cells. In the seminal paper “Traced Monoidal Categories” by Joyal, Street and Verity [4], it is claimed that the Int-construction gives a le...

متن کامل

From Coalgebraic to Monoidal Traces

The main result of this paper shows how coalgebraic traces, in suitable Kleisli categories, give rise to traced monoidal structure in those Kleisli categories, with finite coproducts as monoidal structure. At the heart of the matter lie partially additive monads inducing partially additive structure in their Kleisli categories. By applying the standard “Int” construction one obtains compact clo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematical Structures in Computer Science

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2009