Personalized TV Recommendation with Mixture Probabilistic Matrix Factorization
نویسندگان
چکیده
With the rapid development of smart TV industry, a large number of TV programs have been available for meeting various user interests, which consequently raise a great demand of building personalized TV recommender systems. Indeed, a personalized TV recommender system can greatly help users to obtain their preferred programs and assist TV and channel providers to attract more audiences. While different methods have been proposed for TV recommendations, most of them neglect the mixture of watching groups behind an individual TV. In other words, there may be different groups of audiences at different times in front of a TV. For instance, watching groups of a TV may consist of children, wife and husband, husband, wife, etc in many US household. To this end, in this paper, we propose a Mixture Probabilistic Matrix Factorization (mPMF) model to learn the program preferences of televisions, which assumes that the preference of a given television can be regarded as the mixed preference of different watching groups. Specifically, the latent vector of a television is drawn from a mixture of Gaussian and the mixture number is the estimated number of watching groups behind the television. To evaluate the proposed mPMF model, we conduct extensive experiments with many state-of-the-art baseline methods and evaluation metrics on a real-world data set. The experimental results clearly demonstrate the effectiveness of our model.
منابع مشابه
Personalized TV Recommendation with Mixture Probabilistic Matrix Factorization | Proceedings of the 2015 SIAM International Conference on Data Mining | Society for Industrial and Applied Mathematics
With the rapid development of smart TV industry, a large number of TV programs have been available for meeting various user interests, which consequently raise a great demand of building personalized TV recommender systems. Indeed, a personalized TV recommender system can greatly help users to obtain their preferred programs and assist TV and channel providers to attract more audiences. While d...
متن کاملHybrid Deep-Semantic Matrix Factorization for Tag-Aware Personalized Recommendation
Matrix factorization has now become a dominant solution for personalized recommendation on the Social Web. To alleviate the cold start problem, previous approaches have incorporated various additional sources of information into traditional matrix factorization models. These upgraded models, however, achieve only “marginal” enhancements on the performance of personalized recommendation. Therefo...
متن کاملPoint-of-Interest Recommendation in Location Based Social Networks with Topic and Location Awareness
The wide spread use of location based social networks (LBSNs) has enabled the opportunities for better location based services through Point-of-Interest (POI) recommendation. Indeed, the problem of POI recommendation is to provide personalized recommendations of places of interest. Unlike traditional recommendation tasks, POI recommendation is personalized, locationaware, and context depended. ...
متن کاملOn-line Weighted Matrix Factorization for TV Program Recommendation
Matrix Factorization (MF) is known as an effective technique in collaborative filtering for recommendation. The MF approaches have often been applied for movie recommender systems which have user rating data. However, they cannot effectively be applicable for TV program recommender systems because (i) explicit rating values are not available; (ii) many TV programs are broadcast under single TV ...
متن کاملLearning Personalized Preference of Strong and Weak Ties for Social Recommendation
Recent years have seen a surge of research on social recommendation techniques for improving recommender systems due to the growing influence of social networks to our daily life. The intuition of social recommendation is that users tend to show affinities with items favored by their social ties due to social influence. Despite the extensive studies, no existing work has attempted to distinguis...
متن کامل