Biomass burning emission inventory with daily resolution: Application to aircraft observations of Asian outflow
نویسندگان
چکیده
[1] We develop a daily-resolved global emission inventory for biomass burning using AVHRR satellite observations of fire activity corrected for data gaps and scan angle biases. We implemented this inventory in a global three-dimensional model (GEOSCHEM) to simulate aircraft CO observations during the TRACE-P mission over the NW Pacific in February–April 2001. Seasonal biomass burning in SE Asia was a major contributor to the outflow of Asian pollution observed in TRACE-P and shows large dayto-day fluctuations that vary depending on location. Three simulations were conducted with the same 3-month total (February–April) emissions but different temporal distributions: 2001 daily resolved, 2001 monthly resolved, and climatological monthly resolved. The effect of daily resolved versus monthly resolved 2001 emissions in the simulation of CO is less than 8 ppbv in Asian outflow over the NW Pacific but can exceed 100 ppbv over source regions. The relatively small effect in Asian outflow reflects spatial and temporal averaging of emissions during ageing in the continental boundary layer. Significant improvement in the simulation of TRACE-P observations (as diagnosed by the resolved variance) is found when using 2001 monthly versus climatological monthly emissions, but using 2001 daily emissions does not offer further improvement.
منابع مشابه
Transport pathways for Asian pollution outflow over the Pacific: Interannual and seasonal variations
[1] The meteorological pathways contributing to Asian pollution outflow over the Pacific are examined with a global three-dimensional model analysis of CO observations from the Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission (February–April 2001). The model is used also to place the TRACE-P observations in an interannual (1994–2001) and seasonal context. The major p...
متن کاملInverting for emissions of carbon monoxide from Asia using aircraft observations over the western Pacific
[1] We use aircraft observations of continental outflow over the western Pacific from the Transport and Chemical Evolution over the Pacific (TRACE-P) mission (March– April 2001), in combination with an optimal estimation inverse model, to improve emission estimates of carbon monoxide (CO) from Asia. A priori emissions and their errors are from a customized bottom-up Asian emission inventory for...
متن کاملConstraints on Asian and European sources of methane from CH4 - C2H6-CO correlations in Asian outflow
Aircraft observations of Asian outflow from the TRACE-P aircraft mission over the NW Pacific (March-April 2001) show large CH4 enhancements relative to background, as well as strong CH4-C2H6-CO correlations that provide signatures of regional sources. We apply a global chemical transport model simulation of the CH4-C2H6-CO system for the TRACE-P period to interpret these observations in terms o...
متن کاملRemote sensed and in situ constraints on processes affecting tropical tropospheric ozone
We use a global chemical transport model (GEOSChem) to evaluate the consistency of satellite measurements of lightning flashes and ozone precursors with in situ measurements of tropical tropospheric ozone. The measurements are tropospheric O3, NO2, and HCHO columns from the GOME satellite instrument, lightning flashes from the OTD and LIS satellite instruments, profiles of O3, CO, and relative ...
متن کاملComparative inverse analysis of satellite (MOPITT) and aircraft (TRACE-P) observations to estimate Asian sources of carbon monoxide
[1] We use an inverse model analysis to compare the top-down constraints on Asian sources of carbon monoxide (CO) in spring 2001 from (1) daily MOPITT satellite observations of CO columns over Asia and the neighboring oceans and (2) aircraft observations of CO concentrations in Asian outflow from the TRACE-P aircraft mission over the northwest Pacific. The inversion uses the maximum a posterior...
متن کامل