Pathogenesis of Escherichia coli O157:H7 strain 86-24 following oral infection of BALB/c mice with an intact commensal flora.

نویسندگان

  • Krystle L Mohawk
  • Angela R Melton-Celsa
  • Tonia Zangari
  • Erica E Carroll
  • Alison D O'Brien
چکیده

Escherichia coli O157:H7 is a food-borne pathogen that can cause hemorrhagic colitis and, occasionally, hemolytic uremic syndrome, a sequela of infection that can result in renal failure and death. Here we sought to model the pathogenesis of orally-administered E. coli O157:H7 in BALB/c mice with an intact intestinal flora. First, we defined the optimal dose that permitted sustained fecal shedding of E. coli O157:H7 over 7 days ( approximately 10(9) colony forming units). Next, we monitored the load of E. coli O157:H7 in intestinal sections over time and observed that the cecum was consistently the tissue with the highest E. coli O157:H7 recovery. We then followed the expression of two key E. coli O157:H7 virulence factors, the adhesin intimin and Shiga toxin type 2, and detected both proteins early in infection when bacterial burdens were highest. Additionally, we noted that during infection, animals lost weight and approximately 30% died. Moribund animals also exhibited elevated levels of blood urea nitrogen, and, on necropsy, showed evidence of renal tubular damage. We conclude that conventional mice inoculated orally with high doses of E. coli O157:H7 can be used to model both intestinal colonization and subsequent development of certain extraintestinal manifestations of E. coli O157:H7 disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dietary choice affects Shiga toxin-producing Escherichia coli (STEC) O157:H7 colonization and disease.

The likelihood that a single individual infected with the Shiga toxin (Stx)-producing, food-borne pathogen Escherichia coli O157:H7 will develop a life-threatening sequela called the hemolytic uremic syndrome is unpredictable. We reasoned that conditions that enhance Stx binding and uptake within the gut after E. coli O157:H7 infection should result in greater disease severity. Because the rece...

متن کامل

Commensal bacteria influence Escherichia coli O157:H7 persistence and Shiga toxin production in the mouse intestine.

The presence of commensal flora reduced colonization of Escherichia coli O157:H7 and production of Shiga toxin (Stx) in the murine intestine. Stx production was not detected in mice colonized with E. coli that were resistant to the Shiga toxin phage, but it was detected in mice colonized with phage-susceptible E. coli.

متن کامل

A DNA Vaccine against Escherichia coli O157:H7

Background: Infection with Escherichia coli O157:H7 rarely leads to bloody diarrhea and causes hemolytic uremic syndrome with renal failure that can be deadly dangerous. Intimin, translocated Intimin receptor (Tir), and enterohemorrhagic E. coli (EHEC) secreted protein A (EspA) proteins are the virulence factors expressed by locus of enterocyte effacement locus of EHEC. This bacterium needs Es...

متن کامل

Ferrets as a model system for renal disease secondary to intestinal infection with Escherichia coli O157:H7 and other Shiga toxin-producing E. coli.

Ferrets were evaluated as a possible small animal model for the development of colitis and/or signs of the hemolytic uremic syndrome after oral infection with Escherichia coli O157:H7 or other Shiga toxin--producing E. coli (STEC). Ferrets treated with streptomycin (Stm) had higher counts of E. coli O157:H7 strain 86-24 Stm-resistant (Stm(r)) or O91:H21 strain B2F1 Stm(r) in their stools than n...

متن کامل

Role of the Escherichia coli O157:H7 O side chain in adherence and analysis of an rfb locus.

Shiga-toxigenic Escherichia coli strains belonging to serotype O157 are important human pathogens, but the genetic basis of expression of the O157 antigen and the role played by the lipopolysaccharide O side chain in the adherence of this organism to epithelial cells are not understood. We performed TnphoA mutagenesis on E. coli O157:H7 strain 86-24 to identify a mutant (strain F12) deficient i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbial pathogenesis

دوره 48 3-4  شماره 

صفحات  -

تاریخ انتشار 2010