Regulating a benzodifuran single molecule redox switch via electrochemical gating and optimization of molecule/electrode coupling.

نویسندگان

  • Zhihai Li
  • Hui Li
  • Songjie Chen
  • Toni Froehlich
  • Chenyi Yi
  • Christian Schönenberger
  • Michel Calame
  • Silvio Decurtins
  • Shi-Xia Liu
  • Eric Borguet
چکیده

We report a novel strategy for the regulation of charge transport through single molecule junctions via the combination of external stimuli of electrode potential, internal modulation of molecular structures, and optimization of anchoring groups. We have designed redox-active benzodifuran (BDF) compounds as functional electronic units to fabricate metal-molecule-metal (m-M-m) junction devices by scanning tunneling microscopy (STM) and mechanically controllable break junctions (MCBJ). The conductance of thiol-terminated BDF can be tuned by changing the electrode potentials showing clearly an off/on/off single molecule redox switching effect. To optimize the response, a BDF molecule tailored with carbodithioate (-CS2(-)) anchoring groups was synthesized. Our studies show that replacement of thiol by carbodithioate not only enhances the junction conductance but also substantially improves the switching effect by enhancing the on/off ratio from 2.5 to 8.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic transport in benzodifuran single-molecule transistors.

Benzodifuran (BDF) single-molecule transistors have been fabricated in electromigration break junctions for electronic measurements. The inelastic electron tunneling spectrum validates that the BDF molecule is the pathway of charge transport. The gating effect is analyzed in the framework of a single-level tunneling model combined with transition voltage spectroscopy (TVS). The analysis reveals...

متن کامل

Study of Aptamer-Attached Juglone in Different pH Ranges and Ionic Concentrations of Buffers

    Electrochemical aptamer-based sensors attract a lot of interest as useful methods because of their low cost, accuracy, sensitivity, and simplicity. An electro-active redox molecule comprises the main part of the electrochemical-based sensors. Ferrocene is one of the most popular redox molecule used in biosensor fabrication. But, instability of ferrocenium ion in strong nucleophilic reagents...

متن کامل

Electrochemistry in nanometer-wide electrochemical cells.

The electrochemical properties of an electrochemical cell defined by two concentric spherical electrodes, separated by a 1 to 20-nm-wide gap, and a freely diffusing electrochemically active molecule (e.g., ferrocene) have been investigated by coupling of Brownian dynamics simulations with long-range electron-transfer probability values. The simulation creates a trajectory of a single molecule a...

متن کامل

Single-Molecule Charge Transport and Electrochemical Gating in Redox-Active Perylene Diimide Junctions

A series of redox-active perylene tetracarboxylic diimide (PTCDI) derivatives have been synthesized and studied by electrochemical cyclic voltammetry and electrochemical scanning tunnelling microscopy break junction techniques. These PTCDI molecules feature the substitution of pyrrolidine at the bay (1,7-) position of perylene and are named pyrrolidine-PTCDIs. These moieties exhibit a small ban...

متن کامل

Break junction under electrochemical gating: testbed for single-molecule electronics.

Molecular electronics aims to construct functional molecular devices at the single-molecule scale. One of the major challenges is to construct a single-molecule junction and to further manipulate the charge transport through the molecular junction. Break junction techniques, including STM break junctions and mechanically controllable break junctions are considered as testbed to investigate and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 136 25  شماره 

صفحات  -

تاریخ انتشار 2014