The Kernel of the Equivariant Kirwan Map and the Residue Formula

نویسنده

  • Lisa C. Jeffrey
چکیده

Using the notion of equivariant Kirwan map, as defined by Goldin [3], we prove that — in the case of Hamiltonian torus actions with isolated fixed points — Tolman and Weitsman’s description of the kernel of the Kirwan map can be deduced directly from the residue theorem of [6] and [7]. A characterization of the kernel of the Kirwan map in terms of residues of one variable (i.e. associated to Hamiltonian circle actions) is obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The residue formula and the Tolman-Weitsman theorem

We give a simple direct proof (for the case of Hamiltonian circle actions with isolated fixed points) that Tolman and Weitsman’s description of the kernel of the Kirwan map in [9] (in other words the sum of those equivariant cohomology classes vanishing on one side of a collection of hyperplanes) is equivalent to the characterization of this kernel given by the residue theorem [6].

متن کامل

The Kirwan map , equivariant Kirwan maps , and their kernels

Consider a Hamiltonian action of a compact Lie group K on a compact symplectic manifold. We find descriptions of the kernel of the Kirwan map corresponding to a regular value of the moment map κK . We start with the case when K is a torus T : we determine the kernel of the equivariant Kirwan map (defined by Goldin in [Go]) corresponding to a generic circle S ⊂ T , and show how to recover from t...

متن کامل

The Kirwan map , equivariant Kirwan maps , and their kernels Lisa

Consider a Hamiltonian action of a compact Lie group K on a compact symplectic manifold. We find descriptions of the kernel of the Kirwan map corresponding to a regular value of the moment map κK . We start with the case when K is a torus T : we determine the kernel of the equivariant Kirwan map (defined by Goldin in [Go]) corresponding to a generic circle S ⊂ T , and show how to recover from t...

متن کامل

An Effective Algorithm for the Cohomology Ring of Symplectic Reductions

Let G be a compact torus acting on a compact symplectic manifold M in a Hamiltonian fashion, and T a subtorus of G. We prove that the kernel of κ : H∗ G (M) → H∗(M//G) is generated by a small number of classes α ∈ H∗ G (M) satisfying very explicit restriction properties. Our main tool is the equivariant Kirwan map, a natural map from the G-equivariant cohomology of M to the G/T -equivariant coh...

متن کامل

ar X iv : m at h / 03 10 22 2 v 1 [ m at h . SG ] 1 5 O ct 2 00 3 LOCALIZATION THEOREMS BY SYMPLECTIC CUTS

Given a compact symplectic manifold M with the Hamiltonian action of a torus T , let zero be a regular value of the moment map, and M 0 the symplectic reduction at zero. Denote by κ 0 the Kirwan map H * T (M) → H * (M 0). For an equivariant cohomology class η ∈ H * T (M) we present new localization formulas which express M 0 κ 0 (η) as sums of certain integrals over the connected components of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003