Combination of Whole Genome Sequencing, Linkage, and Functional Studies Implicates a Missense Mutation in Titin as a Cause of Autosomal Dominant Cardiomyopathy With Features of Left Ventricular Noncompaction
نویسندگان
چکیده
BACKGROUND High throughput next-generation sequencing techniques have made whole genome sequencing accessible in clinical practice; however, the abundance of variation in the human genomes makes the identification of a disease-causing mutation on a background of benign rare variants challenging. METHODS AND RESULTS Here we combine whole genome sequencing with linkage analysis in a 3-generation family affected by cardiomyopathy with features of autosomal dominant left ventricular noncompaction cardiomyopathy. A missense mutation in the giant protein titin is the only plausible disease-causing variant that segregates with disease among the 7 surviving affected individuals, with interrogation of the entire genome excluding other potential causes. This A178D missense mutation, affecting a conserved residue in the second immunoglobulin-like domain of titin, was introduced in a bacterially expressed recombinant protein fragment and biophysically characterized in comparison to its wild-type counterpart. Multiple experiments, including size exclusion chromatography, small-angle x ray scattering, and circular dichroism spectroscopy suggest partial unfolding and domain destabilization in the presence of the mutation. Moreover, binding experiments in mammalian cells show that the mutation markedly impairs binding to the titin ligand telethonin. CONCLUSIONS Here we present genetic and functional evidence implicating the novel A178D missense mutation in titin as the cause of a highly penetrant familial cardiomyopathy with features of left ventricular noncompaction. This expands the spectrum of titin's roles in cardiomyopathies. It furthermore highlights that rare titin missense variants, currently often ignored or left uninterpreted, should be considered to be relevant for cardiomyopathies and can be identified by the approach presented here.
منابع مشابه
Loss of Function Mutations in NNT Are Associated With Left Ventricular Noncompaction.
BACKGROUND Left ventricular noncompaction (LVNC) is an autosomal-dominant, genetically heterogeneous cardiomyopathy with variable severity, which may co-occur with cardiac hypertrophy. METHODS AND RESULTS Here, we generated whole exome sequence data from multiple members from 5 families with LVNC. In 4 of 5 families, the candidate causative mutation segregates with disease in known LVNC genes...
متن کاملNovel gene locus for autosomal dominant left ventricular noncompaction maps to chromosome 11p15.
BACKGROUND Left ventricular noncompaction (LVNC) is a congenital unclassified cardiomyopathy with numerous prominent trabeculations and deep intertrabecular recesses in a hypertrophied and hypokinetic myocardium. It has been reported to occur in isolation or in association with congenital heart disease. Mutations in the X-linked G4.5 gene are responsible for cases of isolated LVNC in male infan...
متن کاملHomozygosity mapping and exome sequencing reveal GATAD1 mutation in autosomal recessive dilated cardiomyopathy.
BACKGROUND Dilated cardiomyopathy (DCM) is a heritable, genetically heterogeneous disorder that typically exhibits autosomal dominant inheritance. Genomic strategies enable discovery of novel, unsuspected molecular underpinnings of familial DCM. We performed genome-wide mapping and exome sequencing in a unique family wherein DCM segregated as an autosomal recessive (AR) trait. METHODS AND RES...
متن کاملExon Sequencing of PKD1 Gene in an Iranian Patient with Autosomal-Dominant Polycystic Kidney Disease
Introduction: Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common genetic kidney disorders with the incidence of 1 in 1,000 births. ADPKD is genetically heterogeneous with two genes identified: PKD1 (16p13.3, 46 exons) and PKD2 (4q21, 15 exons). Eighty five percent of the patients with ADPKD have at least one mutation in the PKD1 gene. Genetic studies have demonstrate...
متن کاملNexilin mutations are associated with left ventricular noncompaction cardiomyopathy
s of the 51st Workshop for Pediatric Research 51st Workshop for Pediatric Research Göttingen, Germany 16-17 April 2015 This supplement has not been sponsored. Meeting abstracts Introduction Left Ventricular Noncompaction Cardiomyopathy (LVNC) is a very rare congenital heart disease. LVNC is a form of cardiomyopathy in which the fetal myocardium fails to "compact" during cardiac development and ...
متن کامل