Reaction rate calculation with time-dependent invariant manifolds.
نویسندگان
چکیده
The identification of trajectories that contribute to the reaction rate is the crucial dynamical ingredient in any classical chemical reactivity calculation. This problem often requires a full scale numerical simulation of the dynamics, in particular if the reactive system is exposed to the influence of a heat bath. As an efficient alternative, we propose here to compute invariant surfaces in the phase space of the reactive system that separate reactive from nonreactive trajectories. The location of these invariant manifolds depends both on time and on the realization of the driving force exerted by the bath. These manifolds allow the identification of reactive trajectories simply from their initial conditions, without the need of any further simulation. In this paper, we show how these invariant manifolds can be calculated, and used in a formally exact reaction rate calculation based on perturbation theory for any multidimensional potential coupled to a noisy environment.
منابع مشابه
Statistical cosymplectic manifolds and their submanifolds
In this paper, we introduce statistical cosymplectic manifolds and investigate some properties of their tensors. We define invariant and anti-invariant submanifolds and study invariant submanifolds with normal and tangent structure vector fields. We prove that an invariant submanifold of a statistical cosymplectic manifold with tangent structure vector field is a cosymplectic and minimal...
متن کاملConversion and Residence Time Calculation for Gas-solid Solid Reactions of the Cylindrical-shaped Particles with Con-stant Size Using the Shrinking Core Model
In this paper, a mathematical model is developed to calculate the conversion and the residence time reaction for plug flow and mixed flow in the reactors filled with cylin-drical particles using the shrinking core model. In this modeling, the size of the particles is un-chamged during the reaction. Also, the reaction rate is controlled by the gas layer resistance, the ash layer resistance, and ...
متن کاملTime-dependent scattering theory for ODEs and applications to reaction dynamics
We develop a time-dependent scattering theory for general vector fields in Euclidean space. We give conditions that ensure that the wave maps exist, are smooth, invertible, and depend smoothly on parameters. We then discuss the intertwining relations and how they can be used to compute stable/unstable manifolds for time-dependent normally hyperbolic invariant manifolds. The theory is particular...
متن کاملComputation of nonautonomous invariant and inertial manifolds
We derive a numerical scheme to compute invariant manifolds for timevariant discrete dynamical systems, i.e., nonautonomous difference equations. Our universally applicable method is based on a truncated Lyapunov-Perron operator and computes invariant manifolds using a system of nonlinear algebraic equations which can be solved both locally using (nonsmooth) inexact Newton, and globally using c...
متن کاملInvariant grids for reaction kinetics
In this paper, we review the construction of low-dimensional manifolds of reduced description for equations of chemical kinetics from the standpoint of the method of invariant manifold (MIM). MIM is based on a formulation of the condition of invariance as an equation, and its solution by Newton iterations. A grid-based version of MIM is developed. Generalizations to open systems are suggested. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 136 22 شماره
صفحات -
تاریخ انتشار 2012