Editing of plant mitochondrial transfer RNAs.

نویسندگان

  • J Fey
  • J H Weil
  • K Tomita
  • A Cosset
  • A Dietrich
  • I Small
  • L Maréchal-Drouard
چکیده

Editing in plant mitochondria consists in C to U changes and mainly affects messenger RNAs, thus providing the correct genetic information for the biosynthesis of mitochondrial (mt) proteins. But editing can also affect some of the plant mt tRNAs encoded by the mt genome. In dicots, a C to U editing event corrects a C:A mismatch into a U:A base-pair in the acceptor stem of mt tRNAPhe (GAA). In larch mitochondria, three C to U editing events restore U:A base-pairs in the acceptor stem, D stem and anticodon stem, respectively, of mt tRNAHis (GUG). For both these mt tRNAs editing of the precursors is a prerequisite for their processing into mature tRNAs. In potato mt tRNACys (GCA), editing converts a C28:U42 mismatch in the anticodon stem into a U28:U42 non-canonical base-pair, and reverse transcriptase minisequencing has shown that the mature mt tRNACys is fully edited. In the bryophyte Marchantia polymorpha this U residue is encoded in the mt genome and evolutionary studies suggest that restoration of the U28 residue is necessary when it is not encoded in the gene. However, in vitro studies have shown that neither processing of the precursor nor aminoacylation of tRNACys requires C to U editing at this position. But sequencing of the purified mt tRNACys has shown that psi is present at position 28, indicating that C to U editing is a prerequisite for the subsequent isomerization of U into psi at position 28.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Editing corrects mispairing in the acceptor stem of bean and potato mitochondrial phenylalanine transfer RNAs.

Editing is a general event in plant mitochondrial messenger RNAs, but has never been detected in a plant mitochondrial transfer RNA (tRNA). We demonstrate here the occurrence of a tRNA editing event in higher plant mitochondria: in both bean and potato, the C encoded at position 4 in the mitochondrial tRNA(Phe)(GAA) gene is converted into a U in the mature tRNA. This nucleotide change corrects ...

متن کامل

Mitochondrial Genome Evolution and a Novel RNA Editing System in Deep-Branching Heteroloboseids

Discoba (Excavata) is an evolutionarily important group of eukaryotes that includes Jakobida, with the most bacterial-like mitochondrial genomes known, and Euglenozoa, many of which have extensively fragmented mitochondrial genomes. However, little is known about the mitochondrial genomes of Heterolobosea, the third main group of Discoba. Here, we studied two heteroloboseids-an undescribed amoe...

متن کامل

Missing Genes, Multiple ORFs, and C-to-U Type RNA Editing in Acrasis kona (Heterolobosea, Excavata) Mitochondrial DNA

Discoba (Excavata) is an ancient group of eukaryotes with great morphological and ecological diversity. Unlike the other major divisions of Discoba (Jakobida and Euglenozoa), little is known about the mitochondrial DNAs (mtDNAs) of Heterolobosea. We have assembled a complete mtDNA genome from the aggregating heterolobosean amoeba, Acrasis kona, which consists of a single circular highly AT-rich...

متن کامل

Expression of the wheat mitochondrial nad3-rps12 transcription unit: correlation between editing and mRNA maturation.

In plant mitochondria, RNA editing involves the conversion of cytidines in the genomic DNA into uridines in the corresponding RNA. Analysis of cDNAs prepared by reverse transcription of mitochondrial RNAs has shown that partially edited RNAs are present in wheat mitochondria. The extent of this partial editing as well as its potential influence on the corresponding protein sequence were studied...

متن کامل

Identification of enzymes for adenosine-to-inosine editing and discovery of cytidine-to-uridine editing in nucleus-encoded transfer RNAs of Arabidopsis.

In all organisms, transfer RNAs (tRNAs) contain numerous modified nucleotides. For many base modifications in tRNAs, the functional significance is not well understood, and the enzymes performing the modification reactions are unknown. Here, we have studied members of a family of putative nucleotide deaminases in the model plant Arabidopsis (Arabidopsis thaliana). We show that two Arabidopsis g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biochimica Polonica

دوره 48 2  شماره 

صفحات  -

تاریخ انتشار 2001