Convergence of Two-Stage Iterative Methods for Hermitian Positive Definite Matrices
نویسندگان
چکیده
Two-stage iterative methods for the solution of linear systems are studied. Convergence of both stationary and nonstationary cases is analyzed when the coefficient matrix is Hermitian positive definite. Keywords—Linear systems, Hermitian matrices, Positive definite matrices, Iterative methods, Nonstationary methods, Two-stage methods.
منابع مشابه
Computing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method
A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...
متن کاملStair Matrices and Their Generalizations with Applications to Iterative Methods Ii: Iteration Arithmetic and Preconditionings
Iteration arithmetic is formally introduced based on iteration multiplication and αaddition which is a special multisplitting. This part focuses on construction of convergent splittings and approximate inverses for Hermitian positive definite matrices by applying stair matrices, their generalizations and iteration arithmetic. Analysis of the splittings and the approximate inverses is also prese...
متن کاملOn SSOR-like preconditioners for non-Hermitian positive definite matrices
We construct, analyze and implement SSOR-like preconditioners for non-Hermitian positive definite system of linear equations when its coefficient matrix possesses either a dominant Hermitian part or a dominant skew-Hermitian part. We derive tight bounds for eigenvalues of the preconditioned matrices and obtain convergence rates of the corresponding SSOR-like iteration methods as well as the cor...
متن کاملThe effectiveness of HYMLS in the Jacobi-Davidson method for stability analysis of fluid flow problems
We construct, analyze and implement SSOR-like preconditioners for non-Hermitian positive definite system of linear equations when its coefficient matrix possesses either a dominant Hermitian part or a dominant skew-Hermitian part. We derive tight bounds for eigenvalues of the preconditioned matrices and obtain convergence rates of the corresponding SSOR-like iteration methods as well as the cor...
متن کاملP-regular Splitting Iterative Methods for Non-hermitian Positive Definite Linear Systems
We study the convergence of P -regular splitting iterative methods for non-Hermitian positive definite linear systems. Our main result is that P -regular splittings of the form A = M−N , where N = N, are convergent. Natural examples of splittings satisfying the convergence conditions are constructed, and numerical experiments are performed to illustrate the convergence results obtained.
متن کامل