ar X iv : 0 80 5 . 09 92 v 2 [ m at h . C O ] 8 J ul 2 00 8 FIBONACCI IDENTITIES AND GRAPH COLORINGS

نویسنده

  • TROELS WINDFELDT
چکیده

We generalize both the Fibonacci and Lucas numbers to the context of graph colorings, and prove some identities involving these numbers. As a corollary we obtain new proofs of some known identities involving Fibonacci numbers such as Fr+s+t = Fr+1Fs+1Ft+1 + FrFsFt − Fr−1Fs−1Ft−1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 80 5 . 09 92 v 1 [ m at h . C O ] 7 M ay 2 00 8 FIBONACCI IDENTITIES AND GRAPH COLORINGS

We generalize both the Fibonacci and Lucas numbers to the context of graph colorings, and prove some identities involving these numbers. As a corollary we obtain new proofs of some known identities involving Fibonacci numbers such as Fr+s+t = Fr+1Fs+1Ft+1 + FrFsFt − Fr−1Fs−1Ft−1.

متن کامل

ar X iv : h ep - t h / 05 03 09 9 v 2 1 8 A pr 2 00 5 Cancellation of energy - divergences in Coulomb gauge QCD

In the Coulomb gauge of nonabelian gauge theories there are in general, in individual graphs, ‘energy-divergences’ on integrating over the loop energy variable for fixed loop momentum. These divergences are avoided in the Hamiltonian, phase-space formulation. But, even in this formulation, energy-divergences re-appear at 2-loop order. We show in an example how these cancel between graphs as a c...

متن کامل

ar X iv : h ep - t h / 05 03 09 9 v 1 1 1 M ar 2 00 5 Cancellation of energy - divergences in Coulomb gauge QCD

In the Coulomb gauge of nonablian gauge theories there are in general, in individual graphs, ‘energy-divergences’ on integrating over the loop energy variable for fixed loop momentum. These divergences are avoided in the Hamiltonian, phase-space formulation. But, even in this formulation, energy-divergences re-appear at 2-loop order. We show in an example how these cancel between graphs as a co...

متن کامل

ar X iv : 0 70 7 . 23 06 v 1 [ m at h . C O ] 1 6 Ju l 2 00 7 Parity , eulerian subgraphs and the Tutte polynomial

Identities obtained by elementary finite Fourier analysis are used to derive a variety of evaluations of the Tutte polynomial of a graph G on the hyperbolae H 2 and H 4. These evaluations are expressed in terms of eulerian subgraphs of G and the size of subgraphs modulo 2, 3, 4 or 6. In particular, a graph is found to have a nowhere-zero 4-flow if and only if there is a correlation between the ...

متن کامل

Fibonacci Identities and Graph Colorings

We generalize both the Fibonacci and Lucas numbers to the context of graph colorings, and prove some identities involving these numbers. As a corollary we obtain new proofs of some known identities involving Fibonacci numbers such as Fr+s+t = Fr+1Fs+1Ft+1 + FrFsFt − Fr−1Fs−1Ft−1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008