Hexagonal Inflation Tilings and Planar Monotiles

نویسندگان

  • Michael Baake
  • Franz Gähler
  • Uwe Grimm
چکیده

Aperiodic tilings with a small number of prototiles are of particular interest, both theoretically and for applications in crystallography. In this direction, many people have tried to construct aperiodic tilings that are built from a single prototile with nearest neighbour matching rules, which is then called a monotile. One strand of the search for a planar monotile has focussed on hexagonal analogues of Wang tiles. This led to two inflation tilings with interesting structural details. Both possess aperiodic local rules that define hulls with a model set structure. We review them in comparison, and clarify their relation with the classic half-hex tiling. In particular, we formulate various known results in a more comparative way, and augment them with some new results on the geometry and the topology of the underlying tiling spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hexagonal Parquet Tilings k - Isohedral Monotiles with Arbitrarily Large k

The interplay between local constraints and global structure of mathematical and physical systems is both subtle and important. The macroscopic physical properties of a system depend heavily on its global symmetries, but these are often difficult to predict given only information about local interactions between the components. A rich history of work on tilings of the Euclidean plane and higher...

متن کامل

Point processes for decagonal quasiperiodic tilings

A general construction principle of inflation rules for decagonal quasiperiodic tilings is proposed. The prototiles are confined to be polygons with unit edges. An inflation rule for a tiling is the combination of an expansion and a division of the tiles, where the expanded tiles can be divided arbitrarily as far as the set of prototiles is maintained. A certain kind of point decoration process...

متن کامل

DNA triangles and self-assembled hexagonal tilings.

We have designed and constructed DNA complexes in the form of triangles. We have created hexagonal planar tilings from these triangles via self-assembly. Unlike previously reported structures self-assembled from DNA, our structures appear to involve bending of double helices. Bending helices may be a useful design option in the creation of self-assembled DNA structures. It has been suggested th...

متن کامل

T Hexagonal Parquet Tilings k - Isohedral Monotiles with Arbitrarily Large k JOSHUA

T he interplay between local constraints and global structure of mathematical and physical systems is both subtle and important. The macroscopic physical properties of a system depend heavily on its global symmetries, but these are often difficult to predict given only information about local interactions between the components. A rich history of work on tilings of the Euclidean plane and highe...

متن کامل

On Quasiperiodic Space Tilings, Inflation, and Dehn Invariants

Abstract We introduce Dehn invariants as a useful tool in the study of the inflation of quasiperiodic space tilings. The tilings by “golden tetrahedra” are considered. We discuss how the Dehn invariants can be applied to the study of inflation properties of the six golden tetrahedra. We also use geometry of the faces of the golden tetrahedra to analyze their inflation properties. We give the in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Symmetry

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2012