Novel Hybrid of LS-SVM and Kalman Filter for GPS/INS Integration
نویسندگان
چکیده
Integration of Global Positioning System (GPS) and Inertial Navigation System (INS) technologies can overcome the drawbacks of the individual systems. One of the advantages is that the integrated solution can provide continuous navigation capability even during GPS outages. However, bridging the GPS outages is still a challenge when Micro-Electro-Mechanical System (MEMS) inertial sensors are used. Methods being currently explored by the research community include applying vehicle motion constraints, optimal smoother, and artificial intelligence (AI) techniques. In the research area of AI, the neural network (NN) approach has been extensively utilised up to the present. In a NN-based integrated system, a Kalman filter (KF) estimates position, velocity and attitude errors, as well as the inertial sensor errors, to output navigation solutions while GPS signals are available. At the same time, a NN is trained to map the vehicle dynamics with corresponding KF states, and to correct INS measurements when GPS measurements are unavailable. To achieve good performance it is critical to select suitable quality and an optimal number of samples for the NN. This is sometimes too rigorous a requirement which limits real world application of NN-based methods. The support vector machine (SVM) approach is based on the structural risk minimisation principle, instead of the minimised empirical error principle that is commonly implemented in a NN. The SVM can avoid local minimisation and over-fitting problems in a NN, and therefore potentially can achieve a higher level of global performance. This paper focuses on the least squares support vector machine (LS-SVM), which can solve highly nonlinear and noisy black-box modelling problems. This paper explores the application of the LS-SVM to aid the GPS/INS integrated system, especially during GPS outages. The paper describes the principles of the LS-SVM and of the KF hybrid method, and introduces the LS-SVM regression algorithm. Field test data is processed to evaluate the performance of the proposed approach.
منابع مشابه
Improvement of Navigation Accuracy using Tightly Coupled Kalman Filter
In this paper, a mechanism is designed for integration of inertial navigation system information (INS) and global positioning system information (GPS). In this type of system a series of mathematical and filtering algorithms with Tightly Coupled techniques with several objectives such as application of integrated navigation algorithms, precise calculation of flying object position, speed and at...
متن کاملHybrid of Support Vector Machines and Kalman Filter for GPS/INS Integration
One of the advantages of GPS/INS integration is that the integrated solution can provide continuous navigation capability even during GPS outages. However, bridging the GPS outages is still a challenge when MEMS inertial sensors are used. Methods being currently explored by the research community include applying vehicle dynamics constraints, optimal smoother, and neural network (NN) algorithms...
متن کاملGPS/INS Integration for Vehicle Navigation based on INS Error Analysis in Kalman Filtering
The Global Positioning System (GPS) and an Inertial Navigation System (INS) are two basic navigation systems. Due to their complementary characters in many aspects, a GPS/INS integrated navigation system has been a hot research topic in the recent decade. The Micro Electrical Mechanical Sensors (MEMS) successfully solved the problems of price, size and weight with the traditional INS. Therefore...
متن کاملA novel hybrid fusion algorithm to bridge the period of GPS outages using low-cost INS
Land Vehicle Navigation (LVN) mostly relies on integrated system consisting of Inertial Navigation System (INS) and Global Positioning System (GPS). The combined system provides continuous and accurate navigation solution when compared to standalone INS or GPS. Different fusion methodology such as those based on Kalman filtering and particle filtering has been proposed that estimates and models...
متن کاملکاهش تعداد ماهوارهها در یک سیستم ناوبری ترکیبی GPS/INS با استفاده از فیلتر ذرهای
The estimation of situation in a combinational navigation GPS/INS with least number of satellites is the main purpose of this paper. As inertial measurement unit uses altimeter for height measurement, we can assume which height poses certain amounts, whereas geographical length and width are unknown to us in this paper. The single difference GPS is employed for updating the inertial navigation ...
متن کامل