On optimal permutation codes

نویسندگان

  • Vivek K. Goyal
  • Serap A. Savari
  • Wei Wang
چکیده

Permutation codes are vector quantizers whose codewords are related by permutations and, in one variant, sign changes. Asymptotically, as the vector dimension grows, optimal Variant I permutation code design is identical to optimal entropy-constrained scalar quantizer (ECSQ) design. However, contradicting intuition and previously published assertions, there are finite block length permutation codes that perform better than the best ones with asymptotically large length; thus, there are Variant I permutation codes whose performances cannot be matched by any ECSQ. Along similar lines, a new asymptotic relation between Variant I and Variant II permutation codes is established but again demonstrated to not necessarily predict the performances of short codes. Simple expressions for permutation code performance are found for memoryless uniform and Laplacian sources. The uniform source yields the aforementioned counterexamples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Permutation Codes and the Kendall's $\tau$-Metric

The rank modulation scheme has been proposed for efficient writing and storing data in non-volatile memory storage. Error-correction in the rank modulation scheme is done by considering permutation codes. In this paper we consider codes in the set of all permutations on n elements, Sn, using the Kendall's τ-metric. We will consider either optimal codes such as perfect codes or concepts related ...

متن کامل

Theoretical Bounds and Constructions of Codes in the Generalized Cayley Metric

Permutation codes have recently garnered substantial research interest due to their potential in various applications including cloud storage systems, genome resequencing and flash memories. In this paper, we study the theoretical bounds and constructions of permutation codes in the generalized Cayley metric. The generalized Cayley metric captures the number of generalized transposition errors ...

متن کامل

Trellis Structure and Higher Weights of Extremal Self-Dual Codes

A method for demonstrating and enumerating uniformly efficient (permutation-optimal) trellis decoders for self-dual codes of high minimum distance is developed. Such decoders and corresponding permutations are known for relatively few codes. The task of finding such permutations is shown to be substantially simplifiable in the case of self-dual codes in general, and for self-dual codes of suffi...

متن کامل

Equidistant frequency permutation arrays and related constant composition codes

This paper introduces and studies the notion of an equidistant frequency permutation array (EFPA). An EFPA of length n = mλ, distance d and size v is defined to be a v×n array T such that 1) each row is a multipermutation on a multiset of m symbols, each repeated with frequency λ, and 2) the Hamming distance between any two distinct rows of T is precisely d. Such an array generalizes the well-s...

متن کامل

Classes of permutation arrays in finite projective spaces

We look at some techniques for constructing permutation arrays using projections in finite projective spaces and the geometry of arcs in the finite projective plane. We say a permutation array PA(n, d) has length n and minimum distance d when it consists of a collection of permutations on n symbols that pairwise agree in at most n − d coordinate positions. Such arrays can also be viewed as non-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2001