Parameter estimation for stochastic equations with additive fractional Brownian sheet

نویسندگان

  • Tommi Sottinen
  • Ciprian A. Tudor
چکیده

We study the maximum likelihood estimator for stochastic equations with additive fractional Brownian sheet. We use the Girsanov transform for the twoparameter fractional Brownian motion, as well as the Malliavin calculus and Gaussian regularity theory. Mathematics Subject Classification (2000): 60G15, G0H07, 60G35, 62M40

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Properties of the Maximum Likelihood Estimator for Stochastic Parabolic Equations with Additive Fractional Brownian Motion

A parameter estimation problem is considered for a diagonaliazable stochastic evolution equation using a finite number of the Fourier coefficients of the solution. The equation is driven by additive noise that is white in space and fractional in time with the Hurst parameter H ≥ 1/2. The objective is to study asymptotic properties of the maximum likelihood estimator as the number of the Fourier...

متن کامل

Asymptotic Properties of the Maximum Likelihood Estimator for Stochastic Parabolic Equations with Additive Fractional Brownian Motion

A parameter estimation problem is considered for a diagonalizable stochastic evolution equation using a finite number of the Fourier coefficients of the solution. The equation is driven by additive noise that is white in space and fractional in time with the Hurst parameter H ≥ 1/2. The objective is to study asymptotic properties of the maximum likelihood estimator as the number of the Fourier ...

متن کامل

On time-dependent neutral stochastic evolution equations with a fractional Brownian motion and infinite delays

In this paper, we consider a class of time-dependent neutral stochastic evolution equations with the infinite delay and a fractional Brownian motion in a Hilbert space. We establish the existence and uniqueness of mild solutions for these equations under non-Lipschitz conditions with Lipschitz conditions being considered as a special case. An example is provided to illustrate the theory

متن کامل

Parametric estimation for linear stochastic differential equations driven by fractional Brownian Motion

We investigate the asymptotic properties of the maximum likelihhod estimator and Bayes estimator of the drift parameter for stochastic processes satisfying a linear stochastic differential equations driven by fractional Brownian motion. We obtain a Bernstein-von Mises type theorem also for such a class of processes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005