A Tight Bound for the Delaunay Triangulation of Points on a Polyhedron

نویسندگان

  • Nina Amenta
  • Dominique Attali
  • Olivier Devillers
چکیده

We show that the Delaunay triangulation of a set of n points distributed nearly uniformly on a p-dimensional polyhedron (not necessarily convex) in d-dimensional Euclidean space is O(n d−k+1 p ), where k = ⌈ p+1⌉. This bound is tight in the worst case, and improves on the prior upper bound for most values of p. [email protected]. Computer Science Department, University of California, One Sheilds Ave, Davis, CA 95616. Fax 1-530-752-5767. Supported by NSF CCF–0093378. [email protected]. Gipsa-lab – CNRS UMR 5216, 961 rue de la Houille Blanche, BP 46, 38402 Grenoble Cedex, France. Supported by ANR ProjectGIGAANR-09-BLAN0331-01. [email protected]. INRIA Sophia Antipolis Méditerranée, BP 93, 06902 SophiaAntipolis, France. Supported by the EU under STREP contract FET-255827 (CGLearning)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Dilation of Delaunay Triangulations of Points in Convex Position

Let S be a finite set of points in the Euclidean plane, and let E be the complete graph whose point-set is S. Chew, in 1986, proved a lower bound of π/2 on the stretch factor of the Delaunay triangulation of S (with respect to E), and conjectured that this bound is tight. Dobkin, Friedman, and Supowit, in 1987, showed that the stretch factor of the Delaunay triangulation of S is at most π( √ 5 ...

متن کامل

Minimal Set of Constraints for 2D Constrained Delaunay Reconstruction

Given a triangulation T of n points in the plane, we are interested in the minimal set of edges in T such that T can be reconstructed from this set (and the vertices of T ) using constrained Delaunay triangulation. We show that this minimal set consists of the non locally Delaunay edges of T , and that its cardinality is less than or equal to n+ i=2 (if i is the number of interior points in T )...

متن کامل

The Stretch Factor of the Delaunay Triangulation Is Less than 1.998

Let S be a finite set of points in the Euclidean plane. Let D be a Delaunay triangulation of S. The stretch factor (also known as dilation or spanning ratio) of D is the maximum ratio, among all points p and q in S, of the shortest path distance from p to q in D over the Euclidean distance ||pq||. Proving a tight bound on the stretch factor of the Delaunay triangulation has been a long standing...

متن کامل

Dense Point Sets Have Sparse Delaunay Triangulations ∗ or “ . . . But Not Too Nasty ” Jeff

The spread of a finite set of points is the ratio between the longest and shortest pairwise distances. We prove that the Delaunay triangulation of any set of n points in R3 with spread ∆ has complexity O(∆3). This bound is tight in the worst case for all ∆ = O( √ n). In particular, the Delaunay triangulation of any dense point set has linear complexity. We also generalize this upper bound to re...

متن کامل

Sets Have Sparse Delaunay Triangulations ∗ or “ . . . But Not Too Nasty ”

The spread of a finite set of points is the ratio between the longest and shortest pairwise distances. We prove that the Delaunay triangulation of any set of n points in R3 with spread ∆ has complexity O(∆3). This bound is tight in the worst case for all ∆ = O( √ n). In particular, the Delaunay triangulation of any dense point set has linear complexity. We also generalize this upper bound to re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2012