Adaptive evolutionary paths from UV reception to sensing violet light by epistatic interactions.
نویسندگان
چکیده
Ultraviolet (UV) reception is useful for such basic behaviors as mate choice, foraging, predator avoidance, communication, and navigation, whereas violet reception improves visual resolution and subtle contrast detection. UV and violet reception are mediated by the short wavelength-sensitive (SWS1) pigments that absorb light maximally (λmax) at ~360 nm and ~395 to 440 nm, respectively. Because of strong nonadditive (epistatic) interactions among amino acid changes in the pigments, the adaptive evolutionary mechanisms of these phenotypes are not well understood. Evolution of the violet pigment of the African clawed frog (Xenopus laevis, λmax = 423 nm) from the UV pigment in the amphibian ancestor (λmax = 359 nm) can be fully explained by eight mutations in transmembrane (TM) I-III segments. We show that epistatic interactions involving the remaining TM IV-VII segments provided evolutionary potential for the frog pigment to gradually achieve its violet-light reception by tuning its color sensitivity in small steps. Mutants in these segments also impair pigments that would cause drastic spectral shifts and thus eliminate them from viable evolutionary pathways. The overall effects of epistatic interactions involving TM IV-VII segments have disappeared at the last evolutionary step and thus are not detectable by studying present-day pigments. Therefore, characterizing the genotype-phenotype relationship during each evolutionary step is the key to uncover the true nature of epistasis.
منابع مشابه
Delayed commitment to evolutionary fate in antibiotic resistance fitness landscapes.
Predicting evolutionary paths to antibiotic resistance is key for understanding and controlling drug resistance. When considering a single final resistant genotype, epistatic contingencies among mutations restrict evolution to a small number of adaptive paths. Less attention has been given to multi-peak landscapes, and while specific peaks can be favoured, it is unknown whether and how early a ...
متن کاملNew Legionella Control Options by UV and Violet LEDs for Hospitals and Care Facilities
Legionella infections caused by contaminated water are a widespread problem worldwide. Discharge lamps like mercury vapor lamps are widely known for the disinfection properties of their radiation, but they suffer technical disadvantages, like high voltages and toxic content, and are, therefore, not suitable for some infection control applications. New high-intensity ultraviolet (UV) an...
متن کاملLong-term adaptation of epistatic genetic networks.
Gene networks are likely to govern most traits in nature. Mutations at these genes often show functional epistatic interactions that lead to complex genetic architectures and variable fitness effects in different genetic backgrounds. Understanding how epistatic genetic systems evolve in nature remains one of the great challenges in evolutionary biology. Here we combine an analytical framework w...
متن کاملStructural, Optical and Ultra-Violet Photodetection Properties of ZnO Nanorods with Various Aspect Ratios
ZnO nanorods with various lengths were synthesized by a two-stage route (by changing the time of growth between 0-240 min) and were characterized using XRD, SEM, UV–Vis and PL techniques. The SEM and XRD results confirmed a fast growth of (0 0 2) plane in the preferential longitudinal orientation, in contrast to lateral growth and therefore, by increasing the time of hydrothermal growth, nanoro...
متن کاملImpact of Epistasis on Evolutionary Adaptation
Background Evolutionary adaptation is a process where a population increases its “fit” to the world it inhabits, and is often likened to climbing a hill or peak. While this process is trivial for fitness landscapes where each mutation provides an advantage (or disadvantage) to the organism that is independent of the fitness effect of a mutation on a different locus, the interaction between muta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science advances
دوره 1 8 شماره
صفحات -
تاریخ انتشار 2015