Using Combined Computational Techniques to Predict the Glass Transition Temperatures of Aromatic Polybenzoxazines
نویسندگان
چکیده
The Molecular Operating Environment software (MOE) is used to construct a series of benzoxazine monomers for which a variety of parameters relating to the structures (e.g. water accessible surface area, negative van der Waals surface area, hydrophobic volume and the sum of atomic polarizabilities, etc.) are obtained and quantitative structure property relationships (QSPR) models are formulated. Three QSPR models (formulated using up to 5 descriptors) are first used to make predictions for the initiator data set (n = 9) and compared to published thermal data; in all of the QSPR models there is a high level of agreement between the actual data and the predicted data (within 0.63-1.86 K of the entire dataset). The water accessible surface area is found to be the most important descriptor in the prediction of T(g). Molecular modelling simulations of the benzoxazine polymer (minus initiator) carried out at the same time using the Materials Studio software suite provide an independent prediction of T(g). Predicted T(g) values from molecular modelling fall in the middle of the range of the experimentally determined T(g) values, indicating that the structure of the network is influenced by the nature of the initiator used. Hence both techniques can provide predictions of glass transition temperatures and provide complementary data for polymer design.
منابع مشابه
Application of Graph Theory: Investigation of Relationship Between Boiling Temperatures of Olefins and Topological Indices
Abstract: In this study an appropriate computational approach was presented for estimating the boiling temperatures of 41 different types of olefins and their derivatives. Based on the guidelines of this approach, several structural indices related to the organic components were applied using graph theory. Meanwhile, in addition to evaluating the relation between the boiling temperatures of ole...
متن کاملSynthesis of cyclic olefin polymers with high glass transition temperature and high transparency using tungsten-based catalyst system
Novel cyclic olefin polymers (COPs) derived from bulky cyclic olefins, tricyclodipentadiene (TCPD) and tricyclo[6.4.0.19,12]-tridec-10-ene (TTE), with high glass transition temperature (Tg), excellent thermal stability, and high transparency, have been synthesized by ring-opening metathesis polymerization (ROMP) and subsequent hydrogenation. ROMP of TCPD and TTE was carried out successfully wit...
متن کاملComputational Simulation of Ablation Phenomena in Glass-filled Phenolic Composites
A one–dimensional, transient and thermal degradation model for predicting responses of composite materials when are exposed to the fire is presented. The presented model simulates ablation of composites with different layers of materials and considers material properties as functions of temperature. The reactions are modeled by using Arrhenius-type parameters and density-temperature diagram...
متن کاملCoumarin- and Carboxyl-Functionalized Supramolecular Polybenzoxazines Form Miscible Blends with Polyvinylpyrrolidone
In this study, we synthesized a novel multifunctional benzoxazine monomer (Coumarin-COOH BZ), possessing both coumarin and COOH groups, through the reaction of 4-methyl-7-hydroxycoumarin, 4-aminobenzoic acid, and paraformaldehyde in 1,4-dioxane, with the structure confirmed using 1H and 13C nuclear magnetic resonance and Fourier transform infrared (FTIR) spectroscopy. Differential scanning calo...
متن کاملEnhancing the bioactivity of a calcium phosphate glass-ceramic with controlled heat treatment
In this paper synthesis and characterization of a bioactive calcium phosphate glass-ceramic is presented, synthesized using a facile method. The glass-ceramic samples are synthesized with heat treating the parent glass at appropriate temperatures, where different calcium phosphate crystalline phases are grown in the parent glass samples during the heat treatment. The amounts of elements a...
متن کامل