Development of a High Precision Displacement Measurement System by Fusing a Low Cost RTK-GPS Sensor and a Force Feedback Accelerometer for Infrastructure Monitoring
نویسندگان
چکیده
A displacement measurement system fusing a low cost real-time kinematic global positioning system (RTK-GPS) receiver and a force feedback accelerometer is proposed for infrastructure monitoring. The proposed system is composed of a sensor module, a base module and a computation module. The sensor module consists of a RTK-GPS rover and a force feedback accelerometer, and is installed on a target structure like conventional RTK-GPS sensors. The base module is placed on a rigid ground away from the target structure similar to conventional RTK-GPS bases, and transmits observation messages to the sensor module. Then, the initial acceleration, velocity and displacement responses measured by the sensor module are transmitted to the computation module located at a central monitoring facility. Finally, high precision and high sampling rate displacement, velocity, and acceleration are estimated by fusing the acceleration from the accelerometer, the velocity from the GPS rover, and the displacement from RTK-GPS. Note that the proposed displacement measurement system can measure 3-axis acceleration, velocity as well as displacement in real time. In terms of displacement, the proposed measurement system can estimate dynamic and pseudo-static displacement with a root-mean-square error of 2 mm and a sampling rate of up to 100 Hz. The performance of the proposed system is validated under sinusoidal, random and steady-state vibrations. Field tests were performed on the Yeongjong Grand Bridge and Yi Sun-sin Bridge in Korea, and the Xihoumen Bridge in China to compare the performance of the proposed system with a commercial RTK-GPS sensor and other data fusion techniques.
منابع مشابه
Optimal Analysis of Seismic Response of a Tall Tower Monitored by an Integrated RTK-GPS System
Seismic response of a tall steel tower in Tokyo, Japan, has been monitored by an integrated RTK-GPS and accelerometer system and compared to results of finite element models (FEM) and frequency domain decomposition (FDD) method. The integrated results presented herein are consistent with FEM predicted values. Because of the inherent limitations of GPS and accelerometer when applied to civil str...
متن کاملThe Complementary Characteristics of GPS and Accelerometer in Monitoring Structural Deformation
Traditionally structural response due to severe conditions has been measured using accelerometers. However it is a relative acceleration measurement. The displacement from acceleration measurement cannot be obtained directly by simply applying the laws of motion through double integration. GPS-RTK offers direct displacement measurements for dynamic monitoring, but it has its own limitations. Th...
متن کاملDisplacement monitoring of a Long-Span Arch Railway Bridge using Digital Image Correlation (DIC)
There is an escalating demand for condition monitoring enhancement of transport infrastructures worldwide. Bridges are of vital importance in transportation infrastructure and need such monitoring. In this research, a non-contact vision-based technique called Digital Image Correlation (DIC) was used to calculate the bridge displacements. A high frame rate camera with 4K capability was used for ...
متن کاملDesign and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter
This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...
متن کاملIntegration of GPS, Accelerometer and Optical Fiber Sensors for Structural Deformation Monitoring
Monitoring the response of structures, especially tall buildings, under severe loading conditions is an important requirement for the validation of their design and construction, as well as being a maintenance concern. Traditionally such response has been measured using accelerometers. However it is impossible to measure the static or quasi-static components of movement with such sensors. An in...
متن کامل