A real time hybrid pattern matching scheme for stock time series

نویسندگان

  • Zhe Zhang
  • Jian Jiang
  • Xiaoyan Liu
  • Wing Hong Lau
  • Huaiqing Wang
  • Rui Zhang
چکیده

Pattern matching in stock time series is an active research area in data mining. We propose a new real-time hybrid pattern-matching algorithm in this paper. The algorithm is based on the Spearman’s rank correlation, rule sets and sliding window. The concept of sliding windows enables patterns matching to be performed only based on subsequence of stock data which are freshly received. Therefore the proposed algorithm can be applied in real-time application and processing time can be reduced. Spearman’s rank correlation coefficient is used to classify the preferred patterns effectively and efficiently first and use the rule sets to provide further ability for describing the query patterns so that is more effective, sensitive and constrainable in distinguishing individual patterns. Encouraging experiment is reported from the tests that the proposed scheme outperforms the other methods both effectively and efficiently, especially in differentiating the special preferred stock patterns or even distorted patterns. .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Association between Bid Series and Transaction Price Facilitating Trading Decision Making Based on VPIP Algorithm

The stock price has long been an essential issue in stock market analysis, while rarely had any relevant study covered the relational effect of the bidder factor on stock price. Hereby we try to find an association between bid and transaction price time series. The fluctuation of pattern ratios embedded in the bid series affects the fluctuation of transaction price. That means when there is sma...

متن کامل

A Three-phase Hybrid Times Series Modeling Framework for Improved Hospital Inventory Demand Forecast

Background and Objectives: Efficient cost management in hospitals’ pharmaceutical inventories have the potential to remarkably contribute to optimization of overall hospital expenditures. To this end, reliable forecasting models for accurate prediction of future pharmaceutical demands are instrumental. While the linear methods are frequently used for forecasting purposes chiefly due to their si...

متن کامل

Which Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?

Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid model...

متن کامل

An Improved Hybrid Model with Automated Lag Selection to Forecast Stock Market

Objective: In general, financial time series such as stock indexes have nonlinear, mutable and noisy behavior. Structural and statistical models and machine learning-based models are often unable to accurately predict series with such a behavior. Accordingly, the aim of the present study is to present a new hybrid model using the advantages of the GMDH method and Non-dominated Sorting Genetic A...

متن کامل

Hybrid Criteria for Nearest Neighbor Selection with Avoidance of Biasing for Long Term Time Series Prediction

Nearest neighbor is pattern matching method for time series prediction in which most recent values of the time series are compared with previous available values and forecasting is achieved by finding the best match pattern (nearest neighbor). Usually Euclidean distance is used to check the similarity of pattern. In this paper two hybrid criteria of pattern matching are being proposed and evalu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010