Unbounded Norm Topology in Banach Lattices

نویسنده

  • M. KANDIĆ
چکیده

A net (xα) in a Banach lattice X is said to un-converge to a vector x if ∥∥|xα−x|∧u∥∥→ 0 for every u ∈ X+. In this paper, we investigate un-topology, i.e., the topology that corresponds to un-convergence. We show that un-topology agrees with the norm topology iff X has a strong unit. Un-topology is metrizable iff X has a quasi-interior point. Suppose that X is order continuous, then un-topology is locally convex iff X is atomic. An order continuous Banach lattice X is a KB-space iff its closed unit ball BX is un-complete. For a Banach lattice X, BX is un-compact iff X is an atomic KB-space. We also study un-compact operators and the relationship between un-convergence and weak*-convergence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some results about unbounded convergences in Banach lattices

Suppose E is a Banach lattice. A net  in E is said to be unbounded absolute weak convergent ( uaw-convergent, for short) to  provided that the net  convergences to zero, weakly.  In this note, we further investigate unbounded absolute weak convergence in E. We show that this convergence is stable under passing to and   from ideals and sublattices. Compatible with un-convergenc, we show that ...

متن کامل

Unbounded Norm Convergence in Banach Lattices

A net (xα) in a vector lattice X is unbounded order convergent to x ∈ X if |xα − x| ∧ u converges to 0 in order for all u ∈ X+. This convergence has been investigated and applied in several recent papers by Gao et al. It may be viewed as a generalization of almost everywhere convergence to general vector lattices. In this paper, we study a variation of this convergence for Banach lattices. A ne...

متن کامل

Unbounded Norm Topology beyond Normed Lattices

In this paper, we generalize the concept of unbounded norm (un) convergence: let X be a normed lattice and Y a vector lattice such that X is an order dense ideal in Y ; we say that a net (yα) un-converges to y in Y with respect to X if ∥∥|yα−y|∧x∥∥→ 0 for every x ∈ X+. We extend several known results about unconvergence and un-topology to this new setting. We consider the special case when Y is...

متن کامل

Uniform Kadec-Klee Property in Banach Lattices

We prove that a Banach lattice X which does not contain the ln ∞uniformly has an equivalent norm which is uniformly Kadec-Klee for a natural topology τ on X. In case the Banach lattice is purely atomic, the topology τ is the coordinatewise convergence topology. 1980 Mathematics Subject Classification: Primary 46B03, 46B42.

متن کامل

Ordered Variational Inequalities and Ordered Complementarity Problems in Banach Lattices

and Applied Analysis 3 Lemma 3. Let (X; ≽) be a Banach lattice. Then the positive coneX is weakly closed. Proof. It is clear that the positive coneX of the Banach lattice X is convex. We have mentioned that the positive coneX of the Banach latticeX is norm closed. ApplyingMazur’s lemma (see [12] or [15]), we have in a Banach space, a convex set is norm closed if and only if it is weakly closed....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017