Cytoskeleton dynamics in axon regeneration

نویسندگان

  • Oriane Blanquie
  • Frank Bradke
چکیده

Recent years have seen cytoskeleton dynamics emerging as a key player in axon regeneration. The cytoskeleton, in particular microtubules and actin, ensures the growth of neuronal processes and maintains the singular, highly polarized shape of neurons. Following injury, adult central axons are tipped by a dystrophic structure, the retraction bulb, which prevents their regeneration. Abnormal cytoskeleton dynamics are responsible for the formation of this growth-incompetent structure but pharmacologically modulating cytoskeleton dynamics of injured axons can transform this structure into a growth-competent growth cone. The cytoskeleton also drives the migration of scar-forming cells after an injury. Targeting its dynamics modifies the composition of the inhibitory environment formed by scar tissue and renders it more permissive for regenerating axons. Hence, cytoskeleton dynamics represent an appealing target to promote axon regeneration. As some of cytoskeleton-targeting drugs are used in the clinics for other purposes, they hold the promise to be used as a basis for a regenerative therapy after a spinal cord injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Up-Regulation of Microtubule Dynamics and Polarity Reversal during Regeneration of an Axon from a Dendrite

Axon regeneration is crucial for recovery after trauma to the nervous system. For neurons to recover from complete axon removal they must respecify a dendrite as an axon: a complete reversal of polarity. We show that Drosophila neurons in vivo can convert a dendrite to a regenerating axon and that this process involves rebuilding the entire neuronal microtubule cytoskeleton. Two major microtubu...

متن کامل

Regulation of Microtubule Dynamics in Axon Regeneration: Insights from C. elegans

The capacity of an axon to regenerate is regulated by its external environment and by cell-intrinsic factors. Studies in a variety of organisms suggest that alterations in axonal microtubule (MT) dynamics have potent effects on axon regeneration. We review recent findings on the regulation of MT dynamics during axon regeneration, focusing on the nematode Caenorhabditis elegans. In C. elegans th...

متن کامل

The kinesin-2 family member KIF3C regulates microtubule dynamics and is required for axon growth and regeneration.

Axon regeneration after injury requires the extensive reconstruction, reorganization, and stabilization of the microtubule cytoskeleton in the growth cones. Here, we identify KIF3C as a key regulator of axonal growth and regeneration by controlling microtubule dynamics and organization in the growth cone. KIF3C is developmentally regulated. Rat embryonic sensory axons and growth cones contain u...

متن کامل

HDAC5 is a novel injury-regulated tubulin deacetylase controlling axon regeneration.

Axon regeneration is an essential process to rebuild functional connections between injured neurons and their targets. Regenerative axonal growth requires alterations in axonal microtubule dynamics, but the signalling mechanisms involved remain incompletely understood. Our results reveal that axon injury induces a gradient of tubulin deacetylation, which is required for axon regeneration both i...

متن کامل

Autophagy induction stabilizes microtubules and promotes axon regeneration after spinal cord injury.

Remodeling of cytoskeleton structures, such as microtubule assembly, is believed to be crucial for growth cone initiation and regrowth of injured axons. Autophagy plays important roles in maintaining cellular homoeostasis, and its dysfunction causes neuronal degeneration. The role of autophagy in axon regeneration after injury remains speculative. Here we demonstrate a role of autophagy in regu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Opinion in Neurobiology

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2018