LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters

نویسنده

  • Mary K. Kuhner
چکیده

UNLABELLED We present a Markov chain Monte Carlo coalescent genealogy sampler, LAMARC 2.0, which estimates population genetic parameters from genetic data. LAMARC can co-estimate subpopulation Theta = 4N(e)mu, immigration rates, subpopulation exponential growth rates and overall recombination rate, or a user-specified subset of these parameters. It can perform either maximum-likelihood or Bayesian analysis, and accomodates nucleotide sequence, SNP, microsatellite or elecrophoretic data, with resolved or unresolved haplotypes. It is available as portable source code and executables for all three major platforms. AVAILABILITY LAMARC 2.0 is freely available at http://evolution.gs.washington.edu/lamarc

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robustness of coalescent estimators to between-lineage mutation rate variation.

Data from HIV and from human neoplastic cells can show substantial between-lineage mutation rate variation even within a single population. Such variation may affect estimators of population quantities such as Theta = 4N(e)mu. Using simulated DNA data, I measured the effect of rate variation on recovery of Theta by the summary-statistic estimator of Watterson (Watterson GA. 1975. On the number ...

متن کامل

Hyperbolic Cosine Log-Logistic Distribution and Estimation of Its Parameters by Using Maximum Likelihood Bayesian and Bootstrap Methods

‎In this paper‎, ‎a new probability distribution‎, ‎based on the family of hyperbolic cosine distributions is proposed and its various statistical and reliability characteristics are investigated‎. ‎The new category of HCF distributions is obtained by combining a baseline F distribution with the hyperbolic cosine function‎. ‎Based on the base log-logistics distribution‎, ‎we introduce a new di...

متن کامل

Improving the Performance of Bayesian Estimation Methods in Estimations of Shift Point and Comparison with MLE Approach

A Bayesian analysis is used to detect a change-point in a sequence of independent random variables from exponential distributions. In This paper, we try to estimate change point which occurs in any sequence of independent exponential observations. The Bayes estimators are derived for change point, the rate of exponential distribution before shift and the rate of exponential distribution after s...

متن کامل

Comparing likelihood and Bayesian coalescent estimation of population parameters.

We have developed a Bayesian version of our likelihood-based Markov chain Monte Carlo genealogy sampler LAMARC and compared the two versions for estimation of theta = 4N(e)mu, exponential growth rate, and recombination rate. We used simulated DNA data to assess accuracy of means and support or credibility intervals. In all cases the two methods had very similar results. Some parameter combinati...

متن کامل

Estimation of the Parameters of the Lomax Distribution using the EM Algorithm and Lindley Approximation

Estimation of statistical distribution parameter is one of the important subject of statistical inference. Due to the applications of Lomax distribution in business, economy, statistical science, queue theory, internet traffic modeling and so on, in this paper, the parameters of Lomax distribution under type II censored samples using maximum likelihood and Bayesian methods are estimated. Wherea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 22 6  شماره 

صفحات  -

تاریخ انتشار 2006