Ultrafast charge photogeneration dynamics in ground-state charge-transfer complexes based on conjugated polymers.
نویسندگان
چکیده
The charge photogeneration and early recombination in MEH-PPV-based charge-transfer complexes (CTCs) and in MEH-PPV/PCBM blend as a reference are studied by ultrafast visible-pump-IR-probe spectroscopy. After excitation of the CTC band, an immediate (<100 fs) electron transfer is observed from the polymer chain to the acceptor with the same yield as in the MEH-PPV/PCBM blend. The forward charge transfer in the CTCs is followed by an efficient (approximately 95%) and fast (<30 ps) geminate recombination. For comparison, the recombination efficiency obtained in the MEH-PPV/PCBM blend does not exceed a mere 50%. Polarization-sensitive experiments demonstrate high (approximately 0.3) values of transient anisotropy for the CTCs polaron band. In contrast, in the MEH-PPV/PCBM blend the dipole moment orientation of the charge-induced transition is less correlated with the polarization of the excitation photon. According to these data, photogeneration and recombination of charges in the CTCs take place locally (i.e., within a single pair of a polymer conjugation segment and an acceptor) while in the MEH-PPV/PCBM blend exciton migration precedes the separation of charges. Results of the ultrafast experiments are supported by photocurrent measurements on the corresponding MEH-PPV/acceptor photodiodes.
منابع مشابه
Efficient two-step photogeneration of long-lived charges in ground-state charge-transfer complexes of conjugated polymer doped with fullerene.
Polarization-sensitive time-resolved visible-infrared pump-probe experiments demonstrate that one can efficiently generate long-lived charges in donor-acceptor charge transfer complex (CTC) of conjugated polymer doped with fullerene, MEH-PPV/dinitroanthraquinone/C(60). In particular, a strong enhancement of the photoinduced charge generation is observed in the red part of the spectrum, i.e. ins...
متن کاملUltrafast dynamics of charge carrier photogeneration and geminate recombination in conjugated polymer:fullerene solar cells
We investigate the nature of ultrafast exciton dissociation and carrier generation in acceptor-doped conjugated polymers. Using a combination of two-pulse femtosecond spectroscopy with photocurrent detection, we compare the exciton dissociation and geminate charge recombination dynamics in blends of two conjugated polymers, MeLPPP methyl-substituted ladder-type poly p-phenylene and MDMO-PPV pol...
متن کاملAmbipolar Charge Photogeneration and Transfer at GaAs/P3HT Heterointerfaces.
Recent work on hybrid photovoltaic systems based on conjugated polymers and III-V compound semiconductors with relatively high power conversion efficiency revived fundamental questions regarding the nature of charge separation and transfer at the interface between organic and inorganic semiconductors with different degrees of delocalization. In this work, we studied photoinduced charge generati...
متن کاملCharge migration and charge transfer in molecular systems
The transfer of charge at the molecular level plays a fundamental role in many areas of chemistry, physics, biology and materials science. Today, more than 60 years after the seminal work of R. A. Marcus, charge transfer is still a very active field of research. An important recent impetus comes from the ability to resolve ever faster temporal events, down to the attosecond time scale. Such a h...
متن کاملDetermination of Trimethoprim Based on Charge-Transfer Complexes Formation
A spectrophotometric study concerning the interaction between Trimethoprim (TMP) ,Sulfamethoxazole (SFMx), as n-donor and 2,3-dichloro-5,6- dicyano-P-benzoquinine (DDQ) and chloranilic acid (CA) as π-acceptor were been performed at 25°C. The results of interaction of CA and DDQwith TMP indicate the formation of a 1:1, 1:2, charge transfer complexes through non equilibrium reactions. In the case...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 112 44 شماره
صفحات -
تاریخ انتشار 2008